Arbitrage opportunity.Risk neutral probability measures.Valuation of contingent claims

STK-MAT 3700/4700 An Introduction to Mathematical Finance

> O. Tymoshenko

University of Oslo
Department of Mathematics

Oslo 2022.10.4

UiO : University of Oslo

Contents

(1) Arbitrage opportunity
(2) Risk Neutral Probability Measures
(3) Valuation of Contingent Claims
(4) Complete and Incomplete Markets

Arbitrage opportunity

Arbitrage opportunity

An arbitrage opportunity (AO) is a trading strategy satisfying:
a) $V(0)=0$.
b) $V(1, \omega) \geq 0, \quad \omega \in \Omega$.
c) $\mathbb{E}[V(1)]>0$.
(c) can be changed by
c') $\exists \omega \in \Omega$ such that $V(1, \omega)>0$.
(2) a), b) c) $\Longleftrightarrow V^{*}(0)=0, V^{*}(1) \geq 0$, and $\mathbb{E}\left[V^{*}(1)\right]>0$.
(3) An AO is a trading strategy

- with zero initial investment,
- without the possibility of bearing a loss
- with a strictly positive profit for at least one of the possible states of the economy.

Arbitrage opportunity

© \exists DTS $\Longrightarrow \exists$ AO.
(2) $\exists \mathrm{AO} \exists \mathrm{DTS}$.

Proof.
© We know that
\exists of DTS $\Longleftrightarrow \exists$ of H such that $V(0)=0$ and $V(1, \omega)>0, \omega \in \Omega$.
But, if $V(1, \omega)>0, \omega \in \Omega$ then

$$
\mathbb{E}[V(1)]=\sum_{\omega \in \Omega} V(1, \omega) P(\omega)>0
$$

(2) The following example provides a counterexample.

Arbitrage opportunity

Example

- Take $K=2, N=1, r=0, B(0)=1, B(1)=1, S(0)=S^{*}(0)=10$ and

$$
S(1, \omega)=S^{*}(1, \omega)=\left\{\begin{array}{lll}
12 & \text { if } & \omega=\omega_{1} \\
10 & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

- Consider the trading strategy $H=\left(H_{0}, H_{1}\right)^{T}=(-10,1)^{T}$, then $V(0)=$ $H_{0} B(0)+H_{1} S(0)=-10+10=0$, and

$$
V(1)=H_{0} B(1)+H_{1} S(1)=\left\{\begin{array}{lll}
-10+12=2 & \text { if } & \omega=\omega_{1} \\
-10+10=0 & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

- Hence, H is an arbitrage opportunity.

Arbitrage opportunity

Example 1

- We know that the model does not contain DTS if and only if \exists LPM.
- A LPM $\pi=\left(\pi_{1}, \pi_{2}\right)^{T}$ must satisfy $\pi \geq 0$ and

$$
10=S^{*}(0)=\mathbb{E}_{\pi}\left[S^{*}(1)\right]=12 \pi_{1}+10 \pi_{2}
$$

- Hence, $\pi=(0,1)^{T}$ is a LPM and we can conclude.

Arbitrage opportunity

H is an $\mathbf{A O} \Longleftrightarrow G^{*}(\omega) \geq 0, \omega \in \Omega$ and $\mathbb{E}\left[G^{*}\right]>0$.

Risk Neutral Probability Measures

Risk neutral probability measures

- Recall that $\exists \mathbf{L P M} \Longrightarrow \nexists$ DTS, but there may be AO.
- In order to rule out AO we need to narrow the concept of LPM.
- The idea is to require that a LPM must assign a strictly positive probability to each state of the economy.
- Equivalently, a LPM, say π, must be equivalent to P, that is,

$$
P(\omega)>0 \Longleftrightarrow \pi(\omega)>0, \quad \omega \in \Omega
$$

A probability measure Q is called a risk neutral probability measure (RNPM) if
(c) $Q(\omega)>0, \quad \omega \in \Omega$.
(2) $\mathbb{E}_{Q}\left[\Delta S_{n}^{*}\right]=0, \quad n=1, \ldots, N$.

Given a financial market model, we will denote by \mathbb{M} the set of all RNPM.

Risk neutral probability measures

- Observe that

$$
0=\mathbb{E}_{Q}\left[\Delta S_{n}^{*}\right]=\mathbb{E}_{Q}\left[S_{n}^{*}(1)-S_{n}^{*}(0)\right]=\mathbb{E}_{Q}\left[S_{n}^{*}(1)\right]-S_{n}^{*}(0)
$$

- That is, $\mathbb{E}_{Q}\left[S_{n}^{*}(1)\right]=S_{n}^{*}(0)$.
- Therefore, Q is a LPM.
[First Fundamental Theorem of Asset Pricing (FFTAP)] $\exists \mathbf{A O} \Longleftrightarrow \exists$ RNPM (that is, $\mathbb{M} \neq \varnothing$).

Risk neutral probability measures

Example (\exists ! RNPM)

- Take $K=2, N=1, r=\frac{1}{9}, B(0)=1, B(1)=\frac{10}{9}, S(0)=5$, and

$$
S^{*}(1, \omega)=\left\{\begin{array}{lll}
6 & \text { if } & \omega=\omega_{1} \\
4 & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

- We are seeking a probability measure $Q=\left(Q_{1}, Q_{2}\right)^{T}$ such that

$$
\begin{aligned}
\mathbb{E}_{Q}\left[\Delta S^{*}\right]=0 & \Longleftrightarrow \mathbb{E}_{Q}\left[S^{*}(1)\right]=S^{*}(0)=5 \\
& \Longleftrightarrow\left\{\begin{array}{cc}
6 Q_{1}+4 Q_{2}=5 \\
Q_{1}+Q_{2} & =1
\end{array}\right.
\end{aligned}
$$

- \exists ! solution to the previous equation given by $Q=(1 / 2,1 / 2)$.
- Therefore, Q is a RNPM and the market is arbitrage free by the FFTAP.

Risk neutral probability measures

Example ($\exists \infty$ RNPM)

- Take $K=3, N=1, r=\frac{1}{9}, B(0)=1, B(1)=\frac{10}{9}, S(0)=5$, and

$$
S^{*}(1, \omega)=\left\{\begin{array}{lll}
6 & \text { if } & \omega=\omega_{1} \\
4 & \text { if } & \omega=\omega_{2} \\
3 & \text { if } & \omega=\omega_{3}
\end{array} .\right.
$$

- For $Q=\left(Q_{1}, Q_{3}, Q_{3}\right)^{T}$ to be a RNPM, Q must satisfy

$$
\begin{aligned}
\mathbb{E}_{Q}\left[\Delta S^{*}\right]=0 & \Longleftrightarrow \mathbb{E}_{Q}\left[S^{*}(1)\right]=S^{*}(0)=5 \\
& \Longleftrightarrow\left\{\begin{array}{cc}
6 Q_{1}+4 Q_{2}+3 Q_{3}=5 \\
Q_{1}+Q_{2}+Q_{3} & =1
\end{array} .\right.
\end{aligned}
$$

- We have 2 equations and 3 unknowns (underdetermined system).

Risk neutral probability measures

Example 3 ($\exists \infty$ RNPM)

- In addition, we also have the restrictions $Q_{i}>0, i=1,2,3$.
- Solving the equations, taking into account the constraints, we obtain a family of RNPM

$$
Q_{\lambda}=(\lambda, 2-3 \lambda,-1+2 \lambda)^{T}, \quad \lambda \in(1 / 2,2 / 3) .
$$

- Now there are infinitely many RNPM (one for each λ) and, again, the market is arbitrage free by the FFTAP.

Valuation of Contingent Claims

Valuation of contingent claims

A contingent claim is a random variable X representing a payoff at time $t=1$.

- Think of a contingent claim as any financial contract with some payoff at time $t=1$ (options for instance).
A contingent claim is said to be attainable (or marketable) if there exists a trading strategy H, called the replicating/hedging portfolio, such that $V(1)=X$. We say that H generates/replicates/hedge X.

Valuation of contingent claims

- Suppose that the contingent claim X is attainable, i.e., $V(1)=X$.
- Suppose also that it can be bought in the market (at time 0) for the price $p(X)$.
- Then, using the no arbitrage pricing principle:
- If $p(X)>V(0)$:
- At $t=0$: Sell the claim (receive $p(X)$), implement X (that is, $V(1)$ at cost $V(0))$ and invest $p(X)-V(0)$ risk free.
- At $t=1:-X+V(1)+(p(X)-V(0))(1+r)>0$.
- If $p(X)<V(0)$:
- At $t=0$: Buy the claim (pay $p(X)$), implement $-X$ (that is, $-V(1)$ receiving $V(0))$ and invest $V(0)-p(X)$ risk free.
- At $t=1: X-V(1)+(V(0)-p(X))(1+r)>0$.
- Does this mean that $p(X)=V(0)$ is the correct price for X ? Not necessarily.
- Suppose that $\exists \hat{H}$ such that $\widehat{V}(1)=X$ and $\widehat{V}(0) \neq V(0)$.
- This second strategy could be used to generate an arbitrage if $p(X)=V(0)$.

Valuation of contingent claims

- In order to rule out this possibility we need to assume that LOP holds.
- We have just proved the following result.

If LOP holds, then the price $p(X)(t=0$ value) of an attainable contingent claim X is given by

$$
\begin{equation*}
p(X)=V(0)=H_{0} B(0)+\sum_{n=1}^{N} H_{n} S_{n}(0), \tag{1}
\end{equation*}
$$

where H is any trading strategy that generates X.

- Recall that $\ddagger \mathbf{A O} \Longrightarrow \nexists$ DTS \Longrightarrow LOP holds.

Valuation of contingent claims

Assume \nexists AO. Then, the price $p(X)$ of any attainable contingent claim X is given by

$$
\begin{equation*}
p(X)=\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right], \tag{2}
\end{equation*}
$$

where Q is any $\mathbf{R N P M}$ in \mathbb{M}.

Valuation of contingent claims

Example

- Take $K=2, N=1, r=\frac{1}{9}, B(0)=1, B(1)=\frac{10}{9}, S(0)=5$,

$$
S^{*}(1, \omega)=\left\{\begin{array}{lll}
6 & \text { if } & \omega=\omega_{1} \\
4 & \text { if } & \omega=\omega_{2}
\end{array}\right.
$$

and

$$
S(1, \omega)=\left\{\begin{array}{lll}
6 \frac{10}{9}=\frac{20}{3} & \text { if } & \omega=\omega_{1} \\
4 \frac{10}{9}=\frac{40}{9} & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

- Recall that in this market there is only one RNPM $Q=(1 / 2,1 / 2)^{T}$.
- Let X be the contingent claim defined by

$$
X(\omega)=\left\{\begin{array}{lll}
7 & \text { if } & \omega=\omega_{1} \\
2 & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

Valuation of contingent claims

- Suppose that X is attainable, then the price of X is given by

$$
p(X)=\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]=\frac{7}{\frac{10}{9}} \frac{1}{2}+\frac{2}{\frac{10}{9}} \frac{1}{2}=\frac{81}{20} .
$$

- Let's prove that X is indeed attainable. We want to find $H=\left(H_{0}, H_{1}\right)^{T}$ that generates X, that is,

$$
\frac{X}{B(1)}=V^{*}(1)=V^{*}(0)+G^{*}=V^{*}(0)+H_{1} \Delta S^{*} .
$$

- Since $V^{*}(0)=V(0)=p(X)=\frac{81}{20}$ and

$$
\Delta S^{*}=\left\{\begin{array}{ccc}
6-5=1 & \text { if } \quad \omega=\omega_{1} \\
4-5=-1 & \text { if } & \omega=\omega_{2}
\end{array}\right.
$$

Valuation of contingent claims

we get the following equations

$$
\begin{aligned}
& \frac{7}{\frac{10}{9}}=\frac{81}{20}+H_{1} \\
& \frac{2}{\frac{20}{9}}=\frac{81}{20}-H_{1} .
\end{aligned}
$$

- These two equations are compatible and $H_{1}=\frac{9}{4}$.
- To determine H_{0} we can use

$$
\frac{81}{20}=V(0)=H_{0} B(0)+H_{1} S(0)=H_{0}+\frac{9}{4} 5,
$$

which yields $H_{0}=-\frac{36}{5}$.

Valuation of contingent claims

- The interpretation is as follows:
- At $t=0$:
- You sell the claim and get $V(0)=\frac{81}{20}$.
- You hedge the claim by borrowing $-H_{0}=\frac{36}{5}$ at interest $\frac{1}{9}$, using $V(0)-H_{0}=\frac{81}{20}+\frac{36}{5}=\frac{45}{4}$ to buy $H_{1}=\frac{V(0)-H_{0}}{S(0)}=\frac{\frac{45}{4}}{5}=\frac{9}{4}$ shares of the stock.
- At $t=1$:
- Pay $-H_{0} B(1)=\frac{36}{5} \frac{10}{9}=8$ to the bank to close the loan.
- The value of the portfolio is

$$
\begin{aligned}
V(1) & =H_{0} B(1)+H_{1} S(1)=-8+\frac{9}{4} S(1) \\
& =\left\{\begin{array}{lll}
-8+\frac{9}{6} \frac{20}{3}=7 & \text { if } & \omega=\omega_{1} \\
-8+\frac{9}{4} \frac{40}{9}=2 & \text { if } & \omega=\omega_{2}
\end{array}\right.
\end{aligned}
$$

and you can pay the contingent claim sold.

Valuation of contingent claims

- Now, suppose that we add a third state ω_{3} in the economy and $S^{*}\left(1, \omega_{3}\right)=3$ and $S\left(1, \omega_{3}\right)=\frac{10}{3}$.
- This is the same extension as in Example 3, so we know $\exists \infty$ RNPM.
- Consider an arbitrary contingent claim X in this market, that is,

$$
X(\omega)=\left\{\begin{array}{lll}
X_{1} & \text { if } & \omega=\omega_{1} \\
X_{2} & \text { if } & \omega=\omega_{2} \\
X_{3} & \text { if } & \omega=\omega_{3}
\end{array}=\left(X_{1}, X_{2}, X_{3}\right)^{T} .\right.
$$

- X is attainable if there exists $H=\left(H_{0}, H_{1}\right)^{T}$ such that

$$
X=V(1)=H_{0} B(0)+H_{1} S(1) .
$$

Valuation of contingent claims

- The previous vector equation boils down to the following overdetermined linear system

$$
\left\{\begin{array}{l}
X_{1}=\frac{10}{9} H_{0}+\frac{20}{3} H_{1} \\
X_{2}=\frac{10}{9} H_{0}+\frac{40}{9} H_{1} \\
X_{3}=\frac{10}{9} H_{0}+\frac{10}{3} H_{1}
\end{array} .\right.
$$

- From the first equation we obtain $\frac{10}{9} H_{0}=X_{1}-\frac{20}{3} H_{1}$ and substituting this expression for $\frac{10}{9} H_{0}$ in the second and third equations we get

$$
\left\{\begin{array}{l}
X_{2}=X_{1}-\frac{20}{3} H_{1}+\frac{40}{9} H_{1}=X_{1}-\frac{20}{9} H_{1} \\
X_{3}=X_{1}-\frac{20}{3} H_{1}+\frac{10}{3} H_{1}=X_{1}-\frac{10}{3} H_{1}
\end{array}\right.
$$

Valuation of contingent claims

- The first equation in the previous system gives

$$
H_{1}=\frac{9}{20}\left(X_{2}-X_{1}\right),
$$

and the second equation gives

$$
H_{1}=\frac{3}{10}\left(X_{3}-X_{1}\right)
$$

- Therefore, equating the previous expressions for H_{1}, we obtain.

$$
\begin{equation*}
\frac{9}{20}\left(X_{2}-X_{1}\right)=\frac{3}{10}\left(X_{3}-X_{1}\right) \Longleftrightarrow X_{1}-3 X_{2}+2 X_{3}=0 \tag{3}
\end{equation*}
$$

- We can conclude that a contingent claim $X=\left(X_{1}, X_{2}, X_{3}\right)^{T}$ in this market is attainable if and only if X satisfies equation (3).

Valuation of contingent claims

Example

- In a general single period model consider the so called counting claim X defined by

$$
X(\omega)=\left\{\begin{array}{lll}
1 & \text { if } & \omega=\widehat{\omega} \\
0 & \text { if } & \omega \neq \widehat{\omega}
\end{array},\right.
$$

for some $\widehat{\omega} \in \Omega$.

- Assuming that X is attainable we have that

$$
p(X)=\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]=\sum_{\omega \in \Omega} \frac{X(\omega)}{B(1)} Q(\omega)=\frac{Q(\widehat{\omega})}{B(1)}=: p(\widehat{\omega}) .
$$

- $p(\widehat{\omega})$ is called the state price for state $\widehat{\omega}$.
- The price of any contingent claim X can be obtained as the weighted sum of its payoff where the weights are the state prices, i.e., $p(X)=\sum_{\omega \in \Omega} X(\omega) p(\omega)$.

Complete and Incomplete Markets

Complete and Incomplete Markets

A financial market model is complete if every contingent claim X is attainable.
Otherwise, we say that the market model is incomplete.

- So far, in order to use the risk neutral pricing principle to find the price of a contingent claim X, we need to ensure that the contingent claim is attainable.
- Therefore, it is important to find useful criteria to decide if a claim is attainable and, more generally, if the market is complete.

Complete and Incomplete Markets

The market is complete $\Longleftrightarrow \operatorname{rank}(S(1, \Omega))=K$.

Proof.

- Let $H=\left(H_{0}, H_{1}, \ldots, H_{n}\right)^{T} \in \mathbb{R}^{N+1}$ be a trading strategy and $X=\left(X_{1}, \ldots, X_{K}\right)^{T} \in \mathbb{R}^{K}$ a contingent claim.
- The market is complete $\Longleftrightarrow S(1, \Omega) H=X$ has a solution in H for every $X \Longleftrightarrow$ Linear span of the columns of $S(1, \Omega)$ is $\mathbb{R}^{K} \Longleftrightarrow$ $\operatorname{dim}(\operatorname{col}(S(1, \Omega)))=K$.
- But note that

$$
\operatorname{rank}(S(1, \Omega))=\operatorname{dim}(\operatorname{col}(S(1, \Omega)))=\operatorname{dim}(\operatorname{row}(S(1, \Omega))) .
$$

- That is, if $S(1, \Omega)$ has K linear independent columns or rows.

Complete and Incomplete Markets

Example (Continuation of Example 2)

- Take $K=2, N=1, r=\frac{1}{9}, B(0)=1, B(1)=\frac{10}{9}, S_{1}(0)=5$, and

$$
S_{1}(1, \omega)=\left\{\begin{array}{lll}
\frac{20}{3} & \text { if } & \omega=\omega_{1} \\
\frac{40}{9} & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

- Recall that this market is arbitrage free and it has a unique RNPM given by $Q=\left(\frac{1}{2}, \frac{1}{2}\right)^{T}$.
- Moreover,

$$
S(1, \Omega)=\left(\begin{array}{cc}
\frac{10}{9} & \frac{20}{3} \\
\frac{10}{9} & \frac{40}{9}
\end{array}\right) \sim_{R_{2} \leadsto R_{2}-R_{1}}\left(\begin{array}{cc}
\frac{10}{9} & \frac{20}{3} \\
0 & \frac{-20}{9}
\end{array}\right),
$$

and we can conclude that $\operatorname{rank}(S(1, \Omega))=2=K$ and the market is complete.

Complete and Incomplete Markets

Example 6

- In the same market we add a second asset with $S_{2}(0)=54$ and

$$
S_{2}(1, \omega)=\left\{\begin{array}{lll}
70 & \text { if } & \omega=\omega_{1} \\
50 & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

- We have that

$$
\mathbb{E}_{Q}\left[S_{2}^{*}(1)\right]=\frac{70}{\frac{10}{9}} \frac{1}{2}+\frac{50}{\frac{10}{9}} \frac{1}{2}=54=S_{2}^{*}(0),
$$

and, therefore, Q is also a RNPM in the extended market.

- Moreover,

$$
S(1, \Omega)=\left(\begin{array}{ccc}
\frac{10}{9} & \frac{20}{3} & 70 \\
\frac{10}{9} & \frac{40}{9} & 50
\end{array}\right) \sim_{R_{2} \rightsquigarrow R_{2}-R_{1}}\left(\begin{array}{ccc}
\frac{10}{9} & \frac{20}{3} & 70 \\
0 & \frac{-20}{9} & -20
\end{array}\right),
$$

so the $\operatorname{rank}(S(1, \Omega))=\operatorname{dim}(\operatorname{row}(S(1, \Omega)))=2=K$ and the market is

Complete and Incomplete Markets

Example (Continuation of Example 3)

- Take $K=3, N=1, r=\frac{1}{9}, B(0)=1, B(1)=\frac{10}{9}, S(0)=5$, and

$$
S^{*}(1, \omega)=\left\{\begin{array}{lll}
6 & \text { if } & \omega=\omega_{1} \\
4 & \text { if } & \omega=\omega_{2} \\
3 & \text { if } & \omega=\omega_{3}
\end{array} .\right.
$$

- In this market we have a family of RNPM

$$
Q_{\lambda}=(\lambda, 2-3 \lambda, 2 \lambda-1)^{T}, \quad \lambda \in(1 / 2,2 / 3) .
$$

- Moreover, the market is incomplete since

$$
S(1, \Omega)=\left(\begin{array}{cc}
\frac{10}{9} & \frac{20}{3} \\
\frac{10}{9} & \frac{40}{9} \\
\frac{10}{9} & \frac{30}{9}
\end{array}\right) \sim_{R_{3} \rightsquigarrow R_{3}-R_{1}}^{R_{2} \rightsquigarrow R_{2}-R_{1}}\left(\begin{array}{cc}
\frac{10}{9} & \frac{20}{3} \\
0 & -\frac{20}{9} \\
0 & -\frac{30}{9}
\end{array}\right)
$$

and the $\operatorname{rank}(S(1, \Omega))=\operatorname{dim}(\operatorname{col}(S(1, \Omega)))=2 \neq K=3$.

Complete and Incomplete Markets

Example 7

- For any contingent claim X and any RNPM Q_{λ} we have

$$
\begin{aligned}
\mathbb{E}_{Q_{\lambda}}\left[\frac{X}{B(1)}\right] & =\lambda \frac{9}{10} X_{1}+(2-3 \lambda) \frac{9}{10} X_{2}+(2 \lambda-1) \frac{9}{10} X_{3} \\
& =\frac{9}{10} \lambda\left(X_{1}-3 X_{2}+2 X_{3}\right)+\frac{9}{10}\left(2 X_{2}-X_{1}\right) .
\end{aligned}
$$

- If X is attainable this value must be the same for all $\lambda \in\left(\frac{1}{2}, \frac{2}{3}\right)$ because it must coincide with $V(0)$, which does not depend on Q_{λ}.
- Note that this happens if and only if

$$
X_{1}-3 X_{2}-2 X_{3}=0 .
$$

- Recall (see Example 4) that this condition also characterizes the attainable contingent claims in this market.
- This is a general principle.

Complete and Incomplete Markets

Suppose that $\mathbb{M} \neq \varnothing$. Then,
A contingent claim X is attainable $\Longleftrightarrow \mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]$ is constant with respect to $Q \in \mathbb{M}$.

Proof.
Smartboard.
[Second Fundamental Theorem of Asset Pricing (SFTAP)] Suppose that $\mathbb{M} \neq \varnothing$. Then,
The market model is complete $\Longleftrightarrow \mathbb{M}=\{Q\}$, that is, \exists ! RNPM.
Proof.
Smartboard.

Complete and Incomplete Markets

- Summarizing, we know how to price all attainable claims in a single period financial market.
- But, what about non-attainable claims in an incomplete model?
- We need some new concepts.

Let X be a non-attainable contingent claim. Then,
(1) The upper hedging price of X, denoted by $V_{+}(X)$, is defined as

$$
V_{+}(X):=\inf \left\{\mathbb{E}_{Q}\left[\frac{Y}{B(1)}\right]: Y \geq X, \quad Y \text { is attainable }\right\} .
$$

(2) The lower hedging price of X, denoted by $V_{-}(X)$, is defined as

$$
V_{-}(X):=\sup \left\{\mathbb{E}_{Q}\left[\frac{Y}{B(1)}\right]: Y \leq X, \quad Y \text { is attainable }\right\} .
$$

Complete and Incomplete Markets

[An analogous remark apply to $V_{-}(X)$]
(1) $V_{+}(X)$ is well defined and it is finite.

- For any $\lambda>0, \lambda B(1)$ is an attainable claim and if λ is large enough $\left(\lambda=\max _{k}\left\{\frac{X_{k}}{B(1)}\right\}\right)$ we have $\lambda B(1) \geq X$.
- Hence, $V_{+}(X) \leq \mathbb{E}_{Q}\left[\frac{\lambda B(1)}{B(1)}\right]=\lambda<+\infty$.
- We also have that

$$
\begin{aligned}
V_{+}(X) & :=\inf _{Y \geq X, Y \text { is attainable }}\left\{\mathbb{E}_{Q}\left[\frac{Y}{B(1)}\right]\right\} \\
& \geq \inf _{Y \geq X, Y \text { is attainable }}\left\{\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]\right\} \\
& =\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right] \geq \min _{k}\left\{\frac{X_{k}}{B(1)}\right\}>-\infty .
\end{aligned}
$$

- Since this inequality holds for all $Q \in \mathbb{M}$, it follows that

$$
V_{+}(X) \geq \sup \left\{\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]: Q \in \mathbb{M}\right\} .
$$

Complete and Incomplete Markets

Remark

2 - $V_{+}(X)$ provides a good upper bound on the fair price of X in the sense that is the price of the cheapest portfolio that can be used to hedge a short position on X.

- If you sell the contingent claim X for more than $V_{+}(X)$ you can make a risk-less profit.
- Therefore, the fair price of X must lie in the interval $\left[V_{-}(X), V_{+}(X)\right]$.
- So we are interested in computing $V_{+}(X)$ as well as any attainable contingent claim $Y \geq X$ such that $V_{+}(X)=\mathbb{E}_{Q}\left[\frac{Y}{B(1)}\right]$.

Complete and Incomplete Markets

If $\mathbb{M} \neq \varnothing$, then for any contingent claim X one has

$$
V_{+}(X)=\sup \left\{\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]: Q \in \mathbb{M}\right\}
$$

and

$$
V_{-}(X)=\inf \left\{\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]: Q \in \mathbb{M}\right\}
$$

Note that if X is attainable

$$
V_{+}(X)=V_{-}(X)=\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]
$$

for any $Q \in \mathbb{M}$.

Complete and Incomplete Markets

Example (Continuation Examples 3 and 7)

- Consider the market with $B(0)=1, S(0)=5$ and payoff matrix

$$
S(1, \Omega)=\left(\begin{array}{cc}
\frac{10}{9} & \frac{20}{3} \\
\frac{10}{9} & \frac{40}{9} \\
\frac{10}{9} & \frac{30}{9}
\end{array}\right) .
$$

- In this market we have a family of RNPM

$$
\mathbb{M}=\left\{Q_{\lambda}=(\lambda, 2-3 \lambda, 2 \lambda-1)^{T}, \lambda \in\left(\frac{1}{2}, \frac{2}{3}\right)\right\},
$$

and $X=\left(X_{1}, X_{2}, X_{3}\right)^{T}$ is attainable if and only if

$$
X_{1}-3 X_{2}-2 X_{3}=0 .
$$

- Take $X=(30,20,10)^{T}$, which is not attainable because $30-3 \times 20-2 \times 10 \neq-50$.

Complete and Incomplete Markets

Example 8

- Then, we compute

$$
\begin{aligned}
\mathbb{E}_{Q_{\lambda}}\left[\frac{X}{B(1)}\right] & =\lambda \frac{9}{10} 30+(2-3 \lambda) \frac{9}{10} 20+(2 \lambda-1) \frac{9}{10} 10 \\
& =27-9 \lambda .
\end{aligned}
$$

- This gives

$$
\begin{aligned}
V_{+}(X) & =\sup _{Q \in \mathbb{M}}\left\{\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]\right\}=\sup _{\lambda \in\left(\frac{1}{2}, \frac{2}{3}\right)}\{27-9 \lambda\} \\
& =27-9 \frac{1}{2}=22 \cdot 5 \\
V_{-}(X) & =\inf _{Q \in \mathbb{M}}\left\{\mathbb{E}_{Q}\left[\frac{X}{B(1)}\right]\right\}=\inf _{\lambda \in\left(\frac{1}{2}, \frac{2}{3}\right)}\{27-9 \lambda\} \\
& =27-9 \frac{2}{2}=21 .
\end{aligned}
$$

Complete and Incomplete Markets

Example 8

- Any price of X in the interval [21,22.5] is arbitrage free.
- By solving appropriate LP problems one can find attainable claims corresponding to the upper and lower hedging prices $V_{+}(X)$ and $V_{-}(X)$.
- In fact, one can check that
- $Y=(30,20,15)^{T} \geq(30,20,10)^{T}=X$ gives

$$
V_{+}(X)=\mathbb{E}_{Q_{\lambda}}\left[\frac{Y}{B(1)}\right], \quad \lambda \in\left(\frac{1}{2}, \frac{2}{3}\right) .
$$

- $Y=\left(30, \frac{50}{3}, 10\right)^{T} \leq(30,20,10)^{T}=X$ gives

$$
V_{-}(X)=\mathbb{E}_{Q_{\lambda}}\left[\frac{Y}{B(1)}\right], \quad \lambda \in\left(\frac{1}{2}, \frac{2}{3}\right) .
$$

Thank you!

