## Optimal Portfolio Problem. Risk Neutral Computational Approach.

STK-MAT 3700/4700 An Introduction to Mathematical Finance

O. Tymoshenko

University of Oslo Department of Mathematics

Oslo 2022.10.16





#### **Contents**

Optimal Portfolio Problem (OPP)

Risk Neutral Computational Approach to the OPP

#### Optimal Portfolio Problem (OPP)

#### Introduction

- The goal of an investor is transforming wealth invested at time t=0 into wealth at time t=1.
- The goal in this section will be to choose the "best" trading strategy.
- To be able to talk about "best" we need a measure of performance.
- We need to introduce the concept of utility function.

#### **Utility function**

A functions  $U: \mathbb{R} \times \Omega \to \mathbb{R}$  is called a **utility function** if for each  $\omega \in \Omega$  fixed the function  $u \mapsto U(u, \omega)$  is

- o differentiable,
- concave,
- **3** strictly increasing  $\left(\frac{\partial}{\partial u}U\left(u,\omega\right)>0,\,\omega\in\Omega\right)$ .
  - For many applications it suffices for U to depend only on the wealth argument u and not on  $\omega \in \Omega$ .

- If  $V\left(1\right)$  is the portfolio value at t=1, then  $U\left(V\left(1\right)\right)$  represents the utility of the wealth  $V\left(1\right)$ .  $\left(U\left(V\left(1,\omega\right),\omega\right),\omega\in\Omega\right)$ .
- ullet *U* being increasing: More wealth  $\Longrightarrow$  More utility.
- U being concave: More wealth ⇒ Less marginal utility (saturation effect)
- Our measure of performance will be the expected utility of the final wealth, that is,

$$\mathbb{E}\left[U\left(V\left(1\right)\right)\right] = \sum_{\omega \in \Omega} U\left(V\left(1,\omega\right),\omega\right)P\left(\omega\right).$$

#### Example (Utility functions)



#### Example



#### Example



#### Optimization problem

ullet Given an initial wealth  $v\in\mathbb{R}$ , we can consider the set of strategies  $H\in\mathbb{R}^{N+1}$  such that

$$v = V(0) = H_0 B(0) + \sum_{n=1}^{N} H_n S_n(0),$$

which impose some constraints on H, and try to maximize the expected utility of the terminal wealth.

That is,

#### Optimal Portfolio Problem (OPP(v, U))

$$\left.\begin{array}{ll} \max & \mathbb{E}\left[U\left(V\left(1\right)\right)\right] \\ \text{subject to} & V\left(0\right) = v \in \mathbb{R}, \\ & H \in \mathbb{R}^{N+1}, \end{array}\right\} \tag{1}$$

#### Optimization problem

• Taking into account that  $V(1) = B(1) V^*(1)$  and

$$V^{*}(1) = V^{*}(0) + G^{*} = v + \sum_{n=1}^{N} H_{n} \Delta S_{n}^{*},$$

we can transform the previous optimization problem with contraints to an unconstrained one.

That is,

**Unconstrained Optimal Portfolio Problem**  $(\mathbf{UOPP}(v, U))$ 

$$\max_{(H_1,\dots,H_N)^T \in \mathbb{R}^N} \mathbb{E}\left[U\left(B\left(1\right)\left\{v + \sum_{n=1}^N H_n \Delta S_n^*\right\}\right)\right]$$
 (2)

ullet Note that we just have moved the inital wealth v from the constrain to the functional to optimize, eliminating the constraint and reducing the arguments of the functional by one.

# Optimal portfolio problem and arbitrage opportunities

• Given a solution to **UOPP**(v, U) we get a solution to **OPP**(v, U) using  $v = H_0 B(0) + \sum_{n=1}^{N} H_n S_n(0)$ , and viceversa.

 $\exists$  solution to the **OPP** $(v, U) \Longrightarrow \nexists$  **AO**.



#### Optimal portfolio problem and RNPM

Suppose H is a solution to the  $\mathbf{OPP}(v,U)$  and V(1) is its final value. Then,

$$Q\left(\omega\right) = \frac{B\left(1,\omega\right)U'\left(V\left(1,\omega\right),\omega\right)}{\mathbb{E}\left[B\left(1\right)U'\left(V\left(1\right)\right)\right]}P\left(\omega\right), \quad \omega \in \Omega,$$

is a RNPM.

### State price density

Let  $Q \in \mathbb{M}$ , then L = Q/P is called the **state price density/ vector** (associated to Q). Suppose B(1) = B(0)(1+r) is constant, H is a solution to the  $\mathbf{OPP}(v,U)$  and V(1) is its final value. Then,

$$L\left(\omega\right) = \frac{Q\left(\omega\right)}{P\left(\omega\right)} = \frac{U'\left(V\left(1,\omega\right),\omega\right)}{\mathbb{E}\left[U'\left(V\left(1\right)\right)\right]}, \quad \omega \in \Omega,$$

that is, the state price density is proportional to the marginal utility of the terminal wealth (U'(V(1))).

### Viability of a market

- If there exists a **RNPM** Q, then does the **OPP**(v, U) have a solution?
- Not necessarily, for some v and U it may happen that  $\mathbf{OPP}(v,U)$  does not have a solution.
- However, one can always find a pair (v,U) such that  $\mathbf{OPP}(v,U)$  has a solution.

### Viability of a market

A market model is **viable** if there exists a function  $U: \mathbb{R} \times \Omega \to \mathbb{R}$  and an initial wealth v such that  $u \mapsto U\left(u,\omega\right)$  is concave, strictly increasing and differentiable for each  $\omega \in \Omega$  and such that the corresponding  $\mathbf{OPP}(v,U)$  has a solution.

#### Example of OPP

#### Example

- Take a generic market model with N=2 and K=3.
- Consider the utility function  $U(u) = -e^{-u}$ , with derivative  $U'(u) = e^{-u}$ .
- Then, at a maximum the following equation must hold

$$0 = \frac{\partial}{\partial H_1} \mathbb{E} \left[ U \left( B \left( 1 \right) \left\{ v + H_1 \Delta S_1^* + H_2 \Delta S_2^* \right\} \right) \right]$$

$$= \mathbb{E} \left[ \Delta S_1^* \exp \left( -B \left( 1 \right) \left\{ v + H_1 \Delta S_1^* + H_2 \Delta S_2^* \right\} \right) \right],$$

$$0 = \frac{\partial}{\partial H_2} \mathbb{E} \left[ U \left( B \left( 1 \right) \left\{ v + H_1 \Delta S_1^* + H_2 \Delta S_2^* \right\} \right) \right]$$

$$= \mathbb{E} \left[ \Delta S_2^* \exp \left( -B \left( 1 \right) \left\{ v + H_1 \Delta S_1^* + H_2 \Delta S_2^* \right\} \right) \right].$$

• One has to solve a system of nonlinear equations for  $H_1$  and  $H_2$  (numerical methods).



Risk Neutral Computational Approach to the OPP

- The previous example shows that the direct approach to solve the OPP easily leads to computational difficultites (system of nonlinear equations)
- There is a more efficient approach based on RNPM.
- Recall that we want to solve

 $\textbf{Optimal Portfolio Problem} \ (\textbf{OPP}(v, U)) \\$ 

$$\left. \begin{array}{ll} \max & \mathbb{E}\left[U\left(V\left(1\right)\right)\right] \\ \text{subject to} & V\left(0\right) = v \in \mathbb{R}, \\ & H \in \mathbb{R}^{N+1}, \end{array} \right\}$$

- The risk neutral computational approach consists in two steps:
- **Step 1** Maximize  $\mathbb{E}\left[U\left(V\left(1\right)\right)\right]$  over the subset of feasible random variables  $V\left(1\right)$ . That is , determine the optimal terminal wealth  $V\left(1\right)$  such that  $V\left(0\right)=v$ .
- **Step 2** Given the optimal terminal wealth  $V\left(1\right)$ , determine a trading strategy H that generates it.

• Step 2 is easy. It boils down to solve a system of linear equations. That is, given  $V(1) \in \mathbb{R}^K$ , find  $H \in \mathbb{R}^{N+1}$  such that

$$H_{0}B(1) + \sum_{n=1}^{N} H_{n}S_{n}(1,\omega_{1}) = V(1,\omega_{1}) \vdots H_{0}B(1) + \sum_{n=1}^{N} H_{n}S_{n}(1,\omega_{1}) = V(1,\omega_{K}),$$

• Step 1 is more challenging and relies on finding a "convenient" feasible region, which we will denote by  $\mathbb{W}_v$ . Besides this, it is a straightforward optimization problem.

- From now on we assume that the model arbitrage free and complete, i.e.,  $\mathbb{M} = \{Q\}$  .
- In this case the set of feasible/attainable wealths is given by

$$\mathbb{W}_{v} = \left\{ W \in \mathbb{R}^{K} : \mathbb{E}_{Q} \left[ \frac{W}{B(1)} \right] = v \right\}$$

 $\bullet$  Note that, for any trading strategy H with  $V\left(0\right)=v$  we have, by the risk neutral pricing principle, that

$$\mathbb{E}_{Q}[V(1)/B(1)] = V(0) = v.$$

- Conversely, for any  $W \in \mathbb{W}_v$  there exists, by the completeness and the risk neutral pricing principle, an H such that V(0) = v and V(1) = W.
- The subproblem to solve in Step 1 is

$$\max_{W\in\mathbb{W}_{v}}\mathbb{E}\left[U\left(W\right)\right].$$



- The previous subproblem is a contrained optimization problem, with equality constraints.
- To solve it, we will use the Lagrange multiplier method
- Consider the Lagrangian function

$$\mathcal{L}(W;\lambda) = \mathbb{E}\left[U(W)\right] - \lambda \left(\mathbb{E}_{Q}\left[\frac{W}{B(1)}\right] - v\right).$$

• Using the state price density L = Q/P we get

$$\mathcal{L}(W;\lambda) = \mathbb{E}\left[U(W)\right] - \lambda \left(\mathbb{E}\left[L\frac{W}{B(1)}\right] - v\right)$$

$$= \mathbb{E}\left[U(W) - \lambda \left(L\frac{W}{B(1)} - v\right)\right]$$

$$= \sum_{k=1}^{K} \left\{U(W_{k}, \omega_{k}) - \lambda L(\omega_{k}) \frac{W_{k}}{B(1, \omega_{k})} + \lambda v\right\} P(\omega_{k}),$$

where  $W_k := W(\omega_k)$ .



The first order optimality conditions gives

$$0 = \frac{\partial}{\partial \lambda} L(W; \lambda) = -\left(\mathbb{E}_{Q}\left[\frac{W}{B(1)}\right] - v\right) \iff \mathbb{E}_{Q}\left[\frac{W}{B(1)}\right] = v,$$

$$0 = \frac{\partial}{\partial W_{k}} L(W; \lambda) = \left\{U'(W_{k}, \omega_{k}) - \lambda \frac{L(\omega_{k})}{B(1, \omega_{k})}\right\} P(\omega_{k}),$$

where k = 1, ..., K.

- Since  $U\left(\cdot,\omega\right)$  is concave,  $U'\left(\cdot,\omega\right)$  is decreasing and the inverse of  $U'\left(\cdot,\omega\right)$  exists, for each  $\omega\in\Omega$  fixed.
- Let  $I(\cdot,\omega)$  denote the inverse of  $U'(\cdot,\omega)$ .

• A solution  $\left(\widehat{W},\widehat{\lambda}\right)$  of the previous equations is given by  $\widehat{W}=I\left(\widehat{\lambda}L/B\left(1\right)\right)$ , that is,

$$\widehat{W}_k = I\left(\frac{\widehat{\lambda}L\left(\omega_k\right)}{B\left(1,\omega_k\right)}\right), \qquad k = 1,...,K,$$

and  $\widehat{\lambda}$  is chosen such that

$$v = \mathbb{E}_{Q} \left[ \frac{\widehat{W}}{B(1)} \right] = \mathbb{E}_{Q} \left[ \frac{I(\widehat{\lambda}L/B(1))}{B(1)} \right]$$
$$= \sum_{k=1}^{K} \frac{I(\widehat{\lambda}L(\omega_{k})/B(1,\omega_{k}))}{B(1,\omega_{k})} Q(w_{k}).$$

• The function I is decreasing and its range will normally include  $(0,+\infty)$ , so  $\widehat{\lambda}$  satisfying the previous equation will exist for v>0.

#### Example

• Consider a market with  $N=2, K=3, B\left(0\right)=1, B\left(1\right)=\frac{10}{9}, S_{1}^{*}\left(0\right)=6, S_{2}^{*}\left(0\right)=10,$  and with payoff matrix

$$S^* (1,\Omega) = \left( \begin{array}{ccc} 1 & 6 & 13 \\ 1 & 8 & 9 \\ 1 & 4 & 8 \end{array} \right).$$

- We will solve the **OPP** with utility function  $U(u) = -e^{-u}$ .
- This example is discussed in the smartboard.

# Thank you!