Review of Probability

STK-MAT 3700/4700 An Introduction to Mathematical Finance

O. Tymoshenko

University of Oslo Department of Mathematics

Oslo 2022.10.26

Contents

Information and Measurability

Conditional Expectation

• Our standing assumption is that $\#\Omega = K < \infty$.

Outcomes of an experiment $\omega_1,....,\omega_K$ are called **elementary events** or **sample points** and the finite set $\Omega=\{\omega_1,....,\omega_K\}$ is called the **space of of elementary events** or the **sample space**. **Events** are all subsets $A\subseteq\Omega$ for which, under the conditions of the experiment, one can conclude that either "the outcome $\omega\in A$ " or "the outcome $\omega\notin A$ ".

Example

- The random experiment consists in tossing a coin three times.
- Then, $\#\Omega = 8$ and

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$$

• Event = " 2 heads in all " = $\{HHT, HTH, THH\} \subset \Omega$.

A collection $\mathcal F$ of subsets of Ω is called an **algebra** on Ω if

- $\mathbf{0} \ \Omega \in \mathcal{F}.$

ullet Note that $arnothing = \Omega^c \in \mathcal{F}$ and

$$A, B \in \mathcal{F} \Rightarrow A \cap B = (A^c \cup B^c)^c \in \mathcal{F}.$$

Hence, an algebra \mathcal{F} is a family of subsets of Ω which is closed under complementation and finitely many set operations (intersection and union).

- If $\#\Omega = \infty$, we need the closedness property to hold for infinitely many set operations.
- In this case, we say that a collection ${\cal F}$ of subsets of Ω is a σ -algebra on Ω if 1., 2. and

3'.
$${A_n}_{n\geq 1}\subseteq \mathcal{F}\Rightarrow \bigcup_{n\geq 1}A_n\in \mathcal{F}$$
.

• For Ω with $\#\Omega < \infty$ both concepts coincide.

Example

Consider the following examples

- \bullet $\mathcal{F}_1 = \{\emptyset, \Omega\}$ trivial algebra. (contains no information)
- ② $\mathcal{F}_{2}=\mathcal{P}\left(\Omega\right)$ collection of all subsets of Ω . (contains all the information)
- **3** $\mathcal{F}_3 = \{\emptyset, \Omega, A, A^c\}$ algebra generated by the event A. (contains the minimal information needed to decide if A has occurred or not)

Let S be a class of subsets of Ω . Then $\mathfrak{a}(S)$, the **algebra generated by** S, is the smallest algebra on Ω containing S. That is,

- ② If $S \subseteq \mathcal{F}$, where \mathcal{F} is an algebra, then $S \subseteq \mathfrak{a}(S) \subseteq \mathcal{F}$.

Note that

- If $S_1 \subseteq S_2$ then $\mathfrak{a}(S_1) \subseteq \mathfrak{a}(S_2)$.
- The intersection of an arbitrary number of algebras is an algebra.
- $\mathfrak{a}(S)$ is the intersection of all the algebras on Ω containing S.

Example

Let
$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$$
.

$$\mathfrak{a}(S_1) = \{\Omega, \emptyset, \{\omega_1\}, \{\omega_2, \omega_3, \omega_4\}\}.$$

② $S_2 = \{\{\omega_1\}, \{\omega_2, \omega_3\}, \{\omega_4\}\}$, then

$$\mathfrak{a}(S_2) = \{\Omega, \emptyset, \{\omega_1\}, \{\omega_2, \omega_3\}, \{\omega_4\}, \{\omega_2, \omega_3, \omega_4\}, \{\omega_1, \omega_4\}, \{\omega_1, \omega_2, \omega_3\}\}.$$

3 $S_3 = \{\{\omega_1\}, \{\omega_1, \omega_4\}\}$, then

$$\mathfrak{a}(S_3) = \{\Omega, \emptyset, \{\omega_1\}, \{\omega_1, \omega_4\}, \{\omega_2, \omega_3, \omega_4\}, \{\omega_2, \omega_3\}, \{\omega_1, \omega_2, \omega_3\}, \{\omega_4\}\}.$$

Example 3

- Since $S_1 \subseteq S_2$, we have that $\mathfrak{a}(S_1) \subseteq \mathfrak{a}(S_2)$.
- The algebra $\mathfrak{a}(S_2)$ contains the events in $\mathfrak{a}(S_1)$ and more.
- Hence, $\mathfrak{a}(S_2)$ is more informative than $\mathfrak{a}(S_1)$.
- Note that, $S_2 \nsubseteq S_3$ and $S_3 \nsubseteq S_2$, but $\mathfrak{a}(S_2) = \mathfrak{a}(S_3)$ and, therefore, $\mathfrak{a}(S_2)$ and $\mathfrak{a}(S_3)$ contain the same information.

An interesting class of subsets of Ω are those which form a partition of Ω . A class of subsets $\pi = \{A_1, \dots, A_m\}$ of Ω is a **partition** of Ω if

Given two partitions π_1 , π_2 of Ω , we say that π_2 is finer than (or refines) π_1 , if for any $A \in \pi_2$ there exists $B \in \pi_1$ such that $A \subseteq B$ and we will denote it by $\pi_1 \subseteq \pi_2$.

Given two partitions π_1 , π_2 of Ω , we may define its **intersection** $\pi_1 \cap \pi_2$ to be the following partition

$$\pi_1 \cap \pi_2 = \{A \cap B : A \in \pi_1 \text{ and } B \in \pi_2\}.$$

Note that, in general, neither $\pi_1 \subseteq \pi_2$ nor $\pi_2 \subseteq \pi_1$, but $\pi_1 \subseteq \pi_1 \cap \pi_2$ and $\pi_2 \subseteq \pi_1 \cap \pi_2$.

Example

$$\begin{array}{c|cccc}
\hline
A_1 & A_2 \\
\hline
A_3 & A_4 \\
\hline
\pi_1 & &
\end{array} \subseteq \begin{array}{c|ccccc}
\hline
B_1 & B_2 & B_3 \\
\hline
B_4 & B_5 \\
\hline
\pi_2 & &
\end{array}$$

But $\pi_3 \cap \pi_4 = \pi_1$ and $\pi_3 \subseteq \pi_1$, $\pi_4 \subseteq \pi_1$.

Why are partitions interesting?

- For any algebra $\mathcal F$ on Ω , there exists a partition π such that $\mathcal F=\mathfrak a\left(\pi\right)$ (bijection).
- The elements of $\mathfrak{a}\left(\pi\right)$ are all possible unions of the elements in π . (easy structure)
- Let $X: \Omega \to \{x_1, \dots, x_M\}$, where $M \le K = \#\Omega$, represent a measurament in a random experiment. Then, the following class of subsets of Ω is a partition

$$\pi_X = \left\{ X^{-1}(x_i) = \{ \omega \in \Omega : X(\omega) = x_i \}, i = 1, ..., M \right\}.$$

(easy to interpret)

Let \mathcal{F} be an algebra on Ω . We say that function $X : \Omega \to \{x_1, \dots, x_M\}$ is \mathcal{F} -measurable (measurable with respect to \mathcal{F}) if

$$X^{-1}(x_i) = \{\omega \in \Omega : X(\omega) = x_i\} \in \mathcal{F}, \quad i = 1, ..., M.$$

X is a random variables if and only if X is $\mathcal{P}\left(\Omega\right)$ -measurable. The **algebra generated by a finite number of r.v.** X_1, X_2, \ldots, X_n , denoted by $\mathfrak{a}\left(X_1, X_2, \ldots, X_n\right)$, is defined as $\mathfrak{a}\left(\bigcap_{i=1}^n \pi_{X_i}\right)$.

- $\mathfrak{a}(X) = \mathfrak{a}(\pi_X)$ is the smallest algebra \mathcal{F} such that X is \mathcal{F} -measurable.
- Let $\mathcal{F} = \mathfrak{a}(\pi)$ where π is a partition of Ω . Then, X is \mathcal{F} -measurable if and only if X is constant on each element of the partition π .
- Usually, $\mathcal{P}(\Omega)$ is strictly finer than $\mathfrak{a}(X)$, that is, by observing X we cannot get all the information available in the sample space Ω .
- $\mathfrak{a}(X) = \mathcal{P}(\Omega)$ if and only if X takes $K = \#\Omega$ different values.

Example

- Let $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$.
- Consider the random variables

$$X(\omega) = \begin{cases} 2 & \text{if} \quad \omega = \omega_1, \omega_2 \\ 4 & \text{if} \quad \omega = \omega_3, \omega_4 \end{cases}$$
$$Y(\omega) = \begin{cases} 1 & \text{if} \quad \omega = \omega_1 \\ 2 & \text{if} \quad \omega = \omega_2 \\ 3 & \text{if} \quad \omega = \omega_3 \\ 4 & \text{if} \quad \omega = \omega_4 \end{cases}.$$

Then,

$$\pi_X = \{\{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}\},$$

$$\mathfrak{a}(X) = \{\emptyset, \Omega, \{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}\},$$

Example 5

$$\pi_Y = \{\{\omega_1\}, \{\omega_2\}, \{\omega_3\}, \{\omega_4\}\},\$$
 $\mathfrak{a}(Y) = \mathfrak{a}(\pi_Y) = \mathcal{P}(\Omega).$

- Let Z be the "random variable" $Z \equiv 1$.
- Then, $\pi_Z = \{\Omega\}$ and $\mathfrak{a}(Z) = \mathfrak{a}(\pi_Z) = \{\emptyset, \Omega\}$.
- Note that Z (in fact any constant random variable) is measurable with respect to any algebra on Ω.

A **filtration** $\mathbb{F} = \{\mathcal{F}_t\}_{t=0,\dots,T}$ on Ω is a sequence of algebras on Ω such that $\mathcal{F}_t \subseteq \mathcal{F}_{t+1}$, $t=0,\dots,T$.

- We will always assume that $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and usually $\mathcal{F}_T = \mathcal{P}(\Omega)$.
- A filtration models the evolution of the information at our disposal through time.
- At time t=0 we have no information and at time T, if $\mathcal{F}_T=\mathcal{P}\left(\Omega\right)$, we have full information.

Two graphical ways to represent the flow of information:

Partitions

ω_5
ω_6
ω_7
ω_8

ω_1	ω_5
ω_2	ω_6
ω_3	ω_7
ω_4	ω_8

ω_1	ω_5
ω_2	ω_6
ω_3	ω_7
ω_4	ω_8

ω_1	ω_5
ω_2	ω_6
ω_3	ω_7
ω_4	ω_8

Trees

A **stochastic process** $X = \{X(t)\}_{t=0,\dots,T}$ is a collection of random variables indexed by $t=0,\dots,T$. You can see it as a function $X:\Omega\times\{0,\dots,T\}\to\mathbb{R}$ or as random variable $X:\Omega\to\mathbb{R}^{\{0,\dots,T\}}$, where $\mathbb{R}^{\{0,\dots,T\}}$ denotes the set of all real-valued functions with domain of definition $\{0,\dots,T\}$. We say that a stochastic process X is **adapted to the filtration** \mathbb{F} or \mathbb{F} -adapted if X_t is \mathcal{F}_t -measurable, $t=0,\dots,T$.

The **natural filtration generated by a stochastic process** X, denoted by \mathbb{F}^X , is defined by

$$\mathbb{F}^{X} = \left\{ \mathcal{F}_{t}^{X} = \mathfrak{a}\left(X\left(0\right), X\left(1\right), \dots, X\left(t\right)\right) \right\}_{t=0,\dots,T}.$$

• \mathbb{F}^X is the minimal filtration to which X is adapted to. It contains the information that you can get by observing the process X.

We say that a process $X = \{X(t)\}_{t=1,\dots,T}$ is **predictable with respect to a filtration** $\mathbb F$ or $\mathbb F$ -predictable if X_t is $\mathcal F_{t-1}$ -measurable, $t=1,\dots,T$.

Example

• Let $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$ and $X = \{X(t)\}_{t=0,1,2}$ with X(0) = 3,

$$X(1,\omega) = \begin{cases} 5 & \text{if} \quad \omega = \omega_1, \omega_2 \\ 2 & \text{if} \quad \omega = \omega_3, \omega_4 \end{cases},$$

$$X(2,\omega) = \begin{cases} 6 & \text{if} \quad \omega = \omega_1, \omega_2 \\ 3 & \text{if} \quad \omega = \omega_3 \\ 2 & \text{if} \quad \omega = \omega_4 \end{cases}.$$

Then,

$$\mathcal{F}_{0}^{X}=\mathfrak{a}\left(X\left(0
ight)
ight) =\mathfrak{a}\left(\pi_{X\left(0
ight) }
ight) =\left\{ \varnothing ,\Omega
ight\} ext{,}$$

Example 6

$$\begin{split} \mathcal{F}_{1}^{X} &= \mathfrak{a}\left(X\left(0\right), X\left(1\right)\right) = \mathfrak{a}\left(\pi_{X(0)} \cap \pi_{X(1)}\right) = \mathfrak{a}\left(\pi_{X(1)}\right) \\ &= \mathfrak{a}\left(\left\{\left\{\omega_{1}, \omega_{2}\right\}, \left\{\omega_{3}, \omega_{4}\right\}\right\}\right) = \left\{\emptyset, \Omega, \left\{\omega_{1}, \omega_{2}\right\}, \left\{\omega_{3}, \omega_{4}\right\}\right\}, \\ \mathcal{F}_{2}^{X} &= \mathfrak{a}\left(X\left(0\right), X\left(1\right), X\left(2\right)\right) = \mathfrak{a}\left(\pi_{X(0)} \cap \pi_{X(1)} \cap \pi_{X(2)}\right) \\ &= \mathfrak{a}\left(\pi_{X(2)}\right) = \mathfrak{a}\left(\left\{\left\{\omega_{1}, \omega_{2}\right\}, \left\{\omega_{3}\right\}, \left\{\omega_{4}\right\}\right\}\right) \\ &= \left\{\emptyset, \Omega, \left\{\omega_{1}, \omega_{2}\right\}, \left\{\omega_{3}\right\}, \left\{\omega_{4}\right\}, \left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}, \left\{\omega_{1}, \omega_{2}, \omega_{4}\right\}, \left\{\omega_{3}, \omega_{4}\right\}\right\}. \end{split}$$

- In this case $\mathcal{F}_{2}^{X} \neq \mathcal{P}\left(\Omega\right)$.
- Check what happens if $X(2, \omega_2) = 3$.

- The systematic way to compute $\mathfrak{a}\left(S\right)$, where $S\subseteq\mathcal{P}\left(\Omega\right)$, is to identify the finest partition of Ω that you can obtain by basic set operations on all elements of S, denoted by π_{S} .
- Then, the elements of $\mathfrak{a}(S)$ will be all possible unions of elements in π_S .

- Recall that a **probability measure** P on a finite sample space $\Omega = \{\omega_1, \dots, \omega_K\}$ is a function $P : \Omega \to [0,1]$ such that $\sum_{i=1}^K P(\omega_i) = 1$.
- The triple $(\Omega, \mathcal{P}(\Omega), P)$ is a **probability space**.
- In addition, we will assume that $P\left(\omega_i\right)>0$, $i=1,\ldots,K$. This assumption is not essential but implies that all sets in $\mathcal{P}\left(\Omega\right)$ have strictly positive probability, which simplifies the statements about conditional probabilities and conditional expectations.
- ullet Given an event $A\in\mathcal{P}\left(\Omega\right)$ the **probability of** A happening is given by

$$P(A) = \sum_{\omega \in A} P(\omega).$$

• We say that **two events** A, $B \in \mathcal{P}(\Omega)$ **are independent** if

$$P(A \cap B) = P(A) P(B).$$

• Given two events $A, B \in \mathcal{P}(\Omega)$, the **probability of** A **given** B, denoted by

$$P(A|B) = P(A \cap B) / P(B)$$
.

In general, we would need to assume that P(B)>0 for this probability to be well defined. However, thanks to the assumption on the strict positivity of P, this probability is always well defined in our setup.

Given **two algebras** \mathcal{F}_1 , \mathcal{F}_2 on Ω we say that they **are independent** if for all $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$ we have that A and B are independent. Given a random variable X we define its **expectation** by

$$\mathbb{E}\left[X\right] = \sum_{\omega \in \Omega} X\left(\omega\right) P\left(\omega\right).$$

Conditional expectation. Definition.

Given an algebra $\mathcal F$ and a random variable X we define the **conditional expectation of** X **given** $\mathcal F$ as the unique random variable Z, denoted by $\mathbb E\left[X|\mathcal F\right]$, satisfying

- \bigcirc Z is \mathcal{F} -measurable.
- - Note that since $\mathbb{E}\left[X|\mathcal{F}\right]$ is \mathcal{F} -measurable, it is constant on the partition that generates \mathcal{F} .
 - How we compute $\mathbb{E}[X|\mathcal{F}]$?

Let $A\in\mathcal{P}\left(\Omega\right)$ and X be a random variable. Then, the **conditional** expectation of X given A is the quantity

$$\mathbb{E}\left[\left.X\right|A\right] = \sum_{x} x P\left(\left.X = x\right|A\right),\,$$

where x are the values taken by X and

$$P(X = x | A) = \frac{P(\{\omega : X(\omega) = x\} \cap A)}{P(A)}.$$

• A remark analogous to Remark 28 applies to the previous definition.

Let \mathcal{F} be an algebra on Ω , X be a random variable and let $\pi = \{A_1, \ldots, A_m\}$ be the partition of Ω such that $\mathcal{F} = \mathfrak{a}(\pi)$. Then,

$$\mathbb{E}\left[X|\mathcal{F}\right](\omega) = \sum_{i=1}^{m} \mathbb{E}\left[X|A_{i}\right] \mathbf{1}_{A_{i}}(\omega).$$

- Usually we are given (or we guess) a candidate Z to be $\mathbb{E}\left[X|\mathcal{F}\right]$, then we need to check conditions 1) and 2) in Definition.
- When $\mathcal{F} = \sigma(\pi)$, π a partition it suffices to check that the candidate Z is constant over the elements of π (\mathcal{F} -measurable) and check condition 2) in Definition only for $A_i \in \pi$.

Example

- Let $\Omega = \{\omega_1, ..., \omega_4\}$ and $P(\omega_i) = 1/4, i = 1, ..., 4$.
- Consider the algebra $\mathcal{F}=\{\emptyset,\Omega,\{\omega_1,\omega_2\},\{\omega_3,\omega_4\}\}$ and the random variable X given by

$$\begin{split} X\left(\omega\right) &= \begin{cases} 9 & \text{if} \quad \omega = \omega_{1} \\ 6 & \text{if} \quad \omega = \omega_{2}, \omega_{3} \\ 3 & \text{if} \quad \omega = \omega_{4} \end{cases} \\ &= 9\mathbf{1}_{\left\{\omega_{1}\right\}}\left(\omega\right) + 6\mathbf{1}_{\left\{\omega_{2},\omega_{3}\right\}}\left(\omega\right) + 3\mathbf{1}_{\left\{\omega_{4}\right\}}\left(\omega\right). \end{split}$$

• Compute $\mathbb{E}[X|\mathcal{F}]$.

Suppose X and Y are random variables on $(\Omega, \mathcal{P}(\Omega), P)$, \mathcal{G} is an algebra on Ω , $a, b \in \mathbb{R}$. Then,

- **1 Linearity**: $\mathbb{E}[aX + bY | \mathcal{G}] = a\mathbb{E}[X | \mathcal{G}] + b\mathbb{E}[Y | \mathcal{G}].$
- **2** Law of total expectation: $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]\right] = \mathbb{E}\left[X\right]$.
- **1 Independence**: If X is independent of \mathcal{G} then $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$.
- **Measurability**: If Y is \mathcal{G} -measurable then $\mathbb{E}[XY|\mathcal{G}] = Y\mathbb{E}[X|\mathcal{G}]$.
- **Tower property**: If \mathcal{H} is an algebra on Ω such that $\mathcal{H} \subseteq \mathcal{G}$, then $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{H}\right]|\mathcal{G}\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]|\mathcal{H}\right] = \mathbb{E}\left[X|\mathcal{H}\right]$.

Conditional expectation. Theorem

Let X be a random variable on $(\Omega,\mathcal{P}\left(\Omega\right),P)$ and \mathcal{G} an algebra on $\Omega.$ Then,

$$\mathbb{E}\left[\left.X\right|\mathcal{G}\right] = \arg\min\left\{\mathbb{E}\left[\left(X-Y\right)^2\right]: \ Y \ \mathsf{being} \ \mathcal{G}\text{-measurable}\right\}.$$

The conditional expectation is the best prediction of X based on the information contained in \mathcal{G} , in the sense of minimizing the L^2 error (variance).

Conditional expectation. Definition

Let $\mathbb{F}=\left\{ \mathcal{F}_{t}
ight\} _{t=0,\dots,T}$ be a filtration on $\left(\Omega,\mathcal{P}\left(\Omega\right) ,P\right)$. A stochastic process $X=\left\{ X\left(t\right)
ight\} _{t=0,\dots,T}$ is a **(** \mathbb{F} **-) martingale** if

- lacksquare X is \mathbb{F} -adapted.
- **②** For $t \in \{0, ..., T\}$, $s \ge 0$, $t + s \in \{0, ..., T\}$ we have

$$\mathbb{E}\left[X\left(t+s\right)|\mathcal{F}_{t}\right]=X\left(t\right).$$

• Intuitively, the best forecast of the process at some future time t+s given today's information \mathcal{F}_t is the value of the process today.

An F-adapted process X is called a (sub) supermartingale if

$$\mathbb{E}\left[\left.X\left(t+s\right)\right|\mathcal{F}_{t}\right]\left(\geq\right)\leq X\left(t\right).$$

- If $\#\Omega = +\infty$ then we need to impose that $\mathbb{E}\left[|X\left(t\right)|\right] < \infty$ for all $t = 0, \dots, T$.
- In the previous definitions we can change X(t+s) by X(t+1).

Conditional expectation. Proposition

[Martingale transform or stochastic integral] Let $\mathbb{F}=\{\mathcal{F}_t\}_{t=0,\dots,T}$ be a filtration on $(\Omega,\mathcal{P}(\Omega),P)$. Let H be an \mathbb{F} -predictable process and M an \mathbb{F} -martingale. Then, the process Y defined by $Y_0=c$ (a constant) and

$$Y(t) = \sum_{s=1}^{t} H(s) (M(s) - M(s-1))$$

= $\sum_{s=1}^{t} H(s) \Delta M(s), \quad t = 1, ..., T,$

is an \mathbb{F} -martingale with $\mathbb{E}\left[Y\left(t\right)\right]=c$.

Thank you!