Review of Probability

STK-MAT 3700/4700 An Introduction to Mathematical Finance
O. Tymoshenko

University of Oslo
Department of Mathematics

Oslo 2022.10.26

$\mathrm{UiO}:$ University of Oslo

Contents

(1) Information and Measurability

2 Conditional Expectation

Information and Measurability

Information and measurability

- Our standing assumption is that $\# \Omega=K<\infty$.

Outcomes of an experiment $\omega_{1}, \ldots ., \omega_{K}$ are called elementary events or sample points and the finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}$ is called the space of of elementary events or the sample space. Events are all subsets $A \subseteq \Omega$ for which, under the conditions of the experiment, one can conclude that either "the outcome $\omega \in A$ " or "the outcome $\omega \notin A$ ".

Information and measurability

Example

- The random experiment consists in tossing a coin three times.
- Then, $\# \Omega=8$ and

$$
\Omega=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} .
$$

- Event $=$ " 2 heads in all " $=\{H H T, H T H, T H H\} \subset \Omega$.

A collection \mathcal{F} of subsets of Ω is called an algebra on Ω if
(1) $\Omega \in \mathcal{F}$.
(2) $A \in \mathcal{F} \Rightarrow A^{c}:=\Omega \backslash A \in \mathcal{F}$.
(3) $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$.

Information and measurability

- Note that $\varnothing=\Omega^{c} \in \mathcal{F}$ and

$$
A, B \in \mathcal{F} \Rightarrow A \cap B=\left(A^{c} \cup B^{c}\right)^{c} \in \mathcal{F}
$$

Hence, an algebra \mathcal{F} is a family of subsets of Ω which is closed under complementation and finitely many set operations (intersection and union).

- If $\# \Omega=\infty$, we need the closedness property to hold for infinitely many set operations.
- In this case, we say that a collection \mathcal{F} of subsets of Ω is a σ-algebra on Ω if 1., 2. and
3'. $\left\{A_{n}\right\}_{n \geq 1} \subseteq \mathcal{F} \Rightarrow \cup_{n \geq 1} A_{n} \in \mathcal{F}$.
- For Ω with $\# \Omega<\infty$ both concepts coincide.

Information and measurability

Example

Consider the following examples
(1) $\mathcal{F}_{1}=\{\varnothing, \Omega\}$ trivial algebra. (contains no information)
(2) $\mathcal{F}_{2}=\mathcal{P}(\Omega)$ collection of all subsets of Ω. (contains all the information)
(3) $\mathcal{F}_{3}=\left\{\varnothing, \Omega, A, A^{c}\right\}$ algebra generated by the event A. (contains the minimal information needed to decide if A has occurred or not)

Information and measurability

Let S be a class of subsets of Ω. Then $\mathfrak{a}(S)$, the algebra generated by S, is the smallest algebra on Ω containing S. That is,
(0) $S \subseteq \mathfrak{a}(S)$,
(2) If $S \subseteq \mathcal{F}$, where \mathcal{F} is an algebra, then $S \subseteq \mathfrak{a}(S) \subseteq \mathcal{F}$.

Note that

- If $S_{1} \subseteq S_{2}$ then $\mathfrak{a}\left(S_{1}\right) \subseteq \mathfrak{a}\left(S_{2}\right)$.
- The intersection of an arbitrary number of algebras is an algebra.
- $\mathfrak{a}(S)$ is the intersection of all the algebras on Ω containing S.

Information and measurability

Example

Let $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$.
(0) $S_{1}=\left\{\left\{\omega_{1}\right\}\right\}$, then

$$
\mathfrak{a}\left(S_{1}\right)=\left\{\Omega, \varnothing,\left\{\omega_{1}\right\},\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}\right\}
$$

(2) $S_{2}=\left\{\left\{\omega_{1}\right\},\left\{\omega_{2}, \omega_{3}\right\},\left\{\omega_{4}\right\}\right\}$, then

$$
\begin{aligned}
\mathfrak{a}\left(S_{2}\right)= & \left\{\Omega, \varnothing,\left\{\omega_{1}\right\},\left\{\omega_{2}, \omega_{3}\right\},\left\{\omega_{4}\right\},\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\},\right. \\
& \left.\left\{\omega_{1}, \omega_{4}\right\},\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}\right\} .
\end{aligned}
$$

(3) $S_{3}=\left\{\left\{\omega_{1}\right\},\left\{\omega_{1}, \omega_{4}\right\}\right\}$, then

$$
\begin{aligned}
\mathfrak{a}\left(S_{3}\right)= & \left\{\Omega, \varnothing,\left\{\omega_{1}\right\},\left\{\omega_{1}, \omega_{4}\right\},\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\},\left\{\omega_{2}, \omega_{3}\right\}\right. \\
& \left.\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\},\left\{\omega_{4}\right\}\right\}
\end{aligned}
$$

Information and measurability

Example 3

- Since $S_{1} \subseteq S_{2}$, we have that $\mathfrak{a}\left(S_{1}\right) \subseteq \mathfrak{a}\left(S_{2}\right)$.
- The algebra $\mathfrak{a}\left(S_{2}\right)$ contains the events in $\mathfrak{a}\left(S_{1}\right)$ and more.
- Hence, $\mathfrak{a}\left(S_{2}\right)$ is more informative than $\mathfrak{a}\left(S_{1}\right)$.
- Note that, $S_{2} \nsubseteq S_{3}$ and $S_{3} \nsubseteq S_{2}$, but $\mathfrak{a}\left(S_{2}\right)=\mathfrak{a}\left(S_{3}\right)$ and, therefore, $\mathfrak{a}\left(S_{2}\right)$ and $\mathfrak{a}\left(S_{3}\right)$ contain the same information.

Information and measurability

An interesting class of subsets of Ω are those which form a partition of Ω. A class of subsets $\pi=\left\{A_{1}, \ldots, A_{m}\right\}$ of Ω is a partition of Ω if
(1) $A_{i} \cap A_{j}=\varnothing, \quad i \neq j$,
(2) $\cup_{i=1}^{m} A_{i}=\Omega$.

Given two partitions π_{1}, π_{2} of Ω, we say that π_{2} is finer than (or refines) π_{1}, if for any $A \in \pi_{2}$ there exists $B \in \pi_{1}$ such that $A \subseteq B$ and we will denote it by $\pi_{1} \subseteq \pi_{2}$.

Information and measurability

Given two partitions π_{1}, π_{2} of Ω, we may define its intersection $\pi_{1} \cap \pi_{2}$ to be the following partition

$$
\pi_{1} \cap \pi_{2}=\left\{A \cap B: A \in \pi_{1} \text { and } B \in \pi_{2}\right\} .
$$

Note that, in general, neither $\pi_{1} \subseteq \pi_{2}$ nor $\pi_{2} \subseteq \pi_{1}$, but $\pi_{1} \subseteq \pi_{1} \cap \pi_{2}$ and $\pi_{2} \subseteq \pi_{1} \cap \pi_{2}$.

Information and measurability

Example

0

A_{1}	A_{2}
A_{3}	A_{4}

\subseteq

B_{1}	B_{2}	B_{3}
B_{4}	B_{5}	
π_{2}		

But $\pi_{3} \cap \pi_{4}=\pi_{1}$ and $\pi_{3} \subseteq \pi_{1}, \pi_{4} \subseteq \pi_{1}$.

Information and measurability

Why are partitions interesting?

- For any algebra \mathcal{F} on Ω, there exists a partition π such that $\mathcal{F}=\mathfrak{a}(\pi)$ (bijection).
- The elements of $\mathfrak{a}(\pi)$ are all possible unions of the elements in π. (easy structure)
- Let $X: \Omega \rightarrow\left\{x_{1}, \ldots, x_{M}\right\}$, where $M \leq K=\# \Omega$, represent a measurament in a random experiment. Then, the following class of subsets of Ω is a partition

$$
\pi_{X}=\left\{X^{-1}\left(x_{i}\right)=\left\{\omega \in \Omega: X(\omega)=x_{i}\right\}, i=1, \ldots, M\right\} .
$$

(easy to interpret)

Information and measurability

Let \mathcal{F} be an algebra on Ω. We say that function $X: \Omega \rightarrow\left\{x_{1}, \ldots, x_{M}\right\}$ is \mathcal{F}-measurable (measurable with respect to \mathcal{F}) if

$$
X^{-1}\left(x_{i}\right)=\left\{\omega \in \Omega: X(\omega)=x_{i}\right\} \in \mathcal{F}, \quad i=1, \ldots, M .
$$

X is a random variables if and only if X is $\mathcal{P}(\Omega)$-measurable. The algebra generated by a finite number of r.v. $X_{1}, X_{2}, \ldots, X_{n}$, denoted by $\mathfrak{a}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, is defined as $\mathfrak{a}\left(\bigcap_{i=1}^{n} \pi_{X_{i}}\right)$.

Information and measurability

- $\mathfrak{a}(X)=\mathfrak{a}\left(\pi_{X}\right)$ is the smallest algebra \mathcal{F} such that X is \mathcal{F}-measurable.
- Let $\mathcal{F}=\mathfrak{a}(\pi)$ where π is a partition of Ω. Then, X is \mathcal{F}-measurable if and only if X is constant on each element of the partition π.
- Usually, $\mathcal{P}(\Omega)$ is strictly finer than $\mathfrak{a}(X)$, that is, by observing X we cannot get all the information available in the sample space Ω.
- $\mathfrak{a}(X)=\mathcal{P}(\Omega)$ if and only if X takes $K=\# \Omega$ different values.

Information and measurability

Example

- Let $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$.
- Consider the random variables

$$
\begin{aligned}
& X(\omega)=\left\{\begin{array}{lll}
2 & \text { if } & \omega=\omega_{1}, \omega_{2} \\
4 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array}\right. \\
& Y(\omega)=\left\{\begin{array}{lll}
1 & \text { if } & \omega=\omega_{1} \\
2 & \text { if } & \omega=\omega_{2} \\
3 & \text { if } & \omega=\omega_{3} \\
4 & \text { if } & \omega=\omega_{4}
\end{array}\right.
\end{aligned}
$$

- Then,

$$
\begin{aligned}
\pi_{X} & =\left\{\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\} \\
\mathfrak{a}(X) & =\left\{\varnothing, \Omega,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}
\end{aligned}
$$

Information and measurability

Example 5

$$
\begin{aligned}
\pi_{Y} & =\left\{\left\{\omega_{1}\right\},\left\{\omega_{2}\right\},\left\{\omega_{3}\right\},\left\{\omega_{4}\right\}\right\} \\
\mathfrak{a}(Y) & =\mathfrak{a}\left(\pi_{Y}\right)=\mathcal{P}(\Omega)
\end{aligned}
$$

- Let Z be the "random variable" $Z \equiv 1$.
- Then, $\pi_{Z}=\{\Omega\}$ and $\mathfrak{a}(Z)=\mathfrak{a}\left(\pi_{Z}\right)=\{\varnothing, \Omega\}$.
- Note that Z (in fact any constant random variable) is measurable with respect to any algebra on Ω.

Information and measurability

A filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t=0, \ldots, T}$ on Ω is a sequence of algebras on Ω such that $\mathcal{F}_{t} \subseteq \mathcal{F}_{t+1}, t=0, \ldots, T$.

- We will always assume that $\mathcal{F}_{0}=\{\varnothing, \Omega\}$ and usually $\mathcal{F}_{T}=\mathcal{P}(\Omega)$.
- A filtration models the evolution of the information at our disposal through time.
- At time $t=0$ we have no information and at time T, if $\mathcal{F}_{T}=\mathcal{P}(\Omega)$, we have full information.

Information and measurability

Two graphical ways to represent the flow of information:

- Partitions

ω_{1}	ω_{5}
ω_{2}	ω_{6}
ω_{3}	ω_{7}
ω_{4}	ω_{8}

ω_{1}	ω_{5}
ω_{2}	ω_{6}
ω_{3}	ω_{7}
ω_{4}	ω_{8}

ω_{1}	ω_{5}
ω_{2}	ω_{6}
ω_{3}	ω_{7}
ω_{4}	ω_{8}

ω_{1}	ω_{5}
ω_{2}	ω_{6}
ω_{3}	ω_{7}
ω_{4}	ω_{8}

- Trees

Information and measurability

A stochastic process $X=\{X(t)\}_{t=0, \ldots, T}$ is a collection of random variables indexed by $t=0, \ldots, T$. You can see it as a function $X: \Omega \times\{0, \ldots, T\} \rightarrow \mathbb{R}$ or as random variable $X: \Omega \rightarrow \mathbb{R}^{\{0, \ldots, T\}}$, where $\mathbb{R}^{\{0, \ldots, T\}}$ denotes the set of all real-valued functions with domain of definition $\{0, \ldots, T\}$. We say that a stochastic process X is adapted to the filtration \mathbb{F} or \mathbb{F}-adapted if X_{t} is \mathcal{F}_{t}-measurable, $t=0, \ldots, T$.

Information and measurability

The natural filtration generated by a stochastic process X, denoted by \mathbb{F}^{X}, is defined by

$$
\mathbb{F}^{X}=\left\{\mathcal{F}_{t}^{X}=\mathfrak{a}(X(0), X(1), \ldots, X(t))\right\}_{t=0, \ldots, T}
$$

- \mathbb{F}^{X} is the minimal filtration to which X is adapted to. It contains the information that you can get by observing the process X. We say that a process $X=\{X(t)\}_{t=1, \ldots, T}$ is predictable with respect to a filtration \mathbb{F} or \mathbb{F}-predictable if X_{t} is \mathcal{F}_{t-1}-measurable, $t=1, \ldots, T$.

Information and measurability

Example

- Let $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ and $X=\{X(t)\}_{t=0,1,2}$ with $X(0)=3$,

$$
\begin{aligned}
& X(1, \omega)=\left\{\begin{array}{llc}
5 & \text { if } & \omega=\omega_{1}, \omega_{2} \\
2 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array},\right. \\
& X(2, \omega)=\left\{\begin{array}{llc}
6 & \text { if } & \omega=\omega_{1}, \omega_{2} \\
3 & \text { if } & \omega=\omega_{3} \\
2 & \text { if } & \omega=\omega_{4}
\end{array} .\right.
\end{aligned}
$$

- Then,

$$
\mathcal{F}_{0}^{X}=\mathfrak{a}(X(0))=\mathfrak{a}\left(\pi_{X(0)}\right)=\{\varnothing, \Omega\}
$$

Information and measurability

Example 6

$$
\begin{aligned}
\mathcal{F}_{1}^{X}= & \mathfrak{a}(X(0), X(1))=\mathfrak{a}\left(\pi_{X(0)} \cap \pi_{X(1)}\right)=\mathfrak{a}\left(\pi_{X(1)}\right) \\
= & \mathfrak{a}\left(\left\{\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}\right)=\left\{\varnothing, \Omega,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\} \\
\mathcal{F}_{2}^{X}= & \mathfrak{a}(X(0), X(1), X(2))=\mathfrak{a}\left(\pi_{X(0)} \cap \pi_{X(1)} \cap \pi_{X(2)}\right) \\
= & \mathfrak{a}\left(\pi_{X(2)}\right)=\mathfrak{a}\left(\left\{\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}\right\},\left\{\omega_{4}\right\}\right\}\right) \\
= & \left\{\varnothing, \Omega,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}\right\},\left\{\omega_{4}\right\},\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\},\left\{\omega_{1}, \omega_{2}, \omega_{4}\right\}\right. \\
& \left.\left\{\omega_{3}, \omega_{4}\right\}\right\}
\end{aligned}
$$

- In this case $\mathcal{F}_{2}^{X} \neq \mathcal{P}(\Omega)$.
- Check what happens if $X\left(2, \omega_{2}\right)=3$.

Information and measurability

- The systematic way to compute $\mathfrak{a}(S)$, where $S \subseteq \mathcal{P}(\Omega)$, is to identify the finest partition of Ω that you can obtain by basic set operations on all elements of S, denoted by π_{S}.
- Then, the elements of $\mathfrak{a}(S)$ will be all possible unions of elements in π_{S}.

Conditional Expectation

Conditional expectation

- Recall that a probability measure P on a finite sample space $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}$ is a function $P: \Omega \rightarrow[0,1]$ such that $\sum_{i=1}^{K} P\left(\omega_{i}\right)=1$.
- The triple $(\Omega, \mathcal{P}(\Omega), P)$ is a probability space.
- In addition, we will assume that $P\left(\omega_{i}\right)>0, i=1, \ldots, K$. This assumption is not essential but implies that all sets in $\mathcal{P}(\Omega)$ have strictly positive probability, which simplifies the statements about conditional probabilities and conditional expectations.
- Given an event $A \in \mathcal{P}(\Omega)$ the probability of A happening is given by

$$
P(A)=\sum_{\omega \in A} P(\omega)
$$

Condtional expectation

- We say that two events $A, B \in \mathcal{P}(\Omega)$ are independent if

$$
P(A \cap B)=P(A) P(B) .
$$

- Given two events $A, B \in \mathcal{P}(\Omega)$, the probability of A given B, denoted by

$$
P(A \mid B)=P(A \cap B) / P(B) .
$$

In general, we would need to assume that $P(B)>0$ for this probability to be well defined. However, thanks to the assumption on the strict positivity of P, this probability is always well defined in our setup.

Conditional expectation

Given two algebras $\mathcal{F}_{1}, \mathcal{F}_{2}$ on Ω we say that they are independent if for all $A \in \mathcal{F}_{1}$ and $B \in \mathcal{F}_{2}$ we have that A and B are independent. Given a random variable X we define its expectation by

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) P(\omega)
$$

Conditional expectation. Definition.

Given an algebra \mathcal{F} and a random variable X we define the conditional expectation of X given \mathcal{F} as the unique random variable Z, denoted by $\mathbb{E}[X \mid \mathcal{F}]$, satisfying
(Z is \mathcal{F}-measurable.
(2) $\mathbb{E}\left[\mathbf{1}_{A} X\right]=\mathbb{E}\left[\mathbf{1}_{A} Z\right], A \in \mathcal{F}$.

- Note that since $\mathbb{E}[X \mid \mathcal{F}]$ is \mathcal{F}-measurable, it is constant on the partition that generates \mathcal{F}.
- How we compute $\mathbb{E}[X \mid \mathcal{F}]$?

Conditional expectation

Let $A \in \mathcal{P}(\Omega)$ and X be a random variable. Then, the conditional expectation of X given A is the quantity

$$
\mathbb{E}[X \mid A]=\sum_{x} x P(X=x \mid A),
$$

where x are the values taken by X and

$$
P(X=x \mid A)=\frac{P(\{\omega: X(\omega)=x\} \cap A)}{P(A)} .
$$

- A remark analogous to Remark 28 applies to the previous definition.

Conditional expectation

Let \mathcal{F} be an algebra on Ω, X be a random variable and let $\pi=\left\{A_{1}, \ldots, A_{m}\right\}$ be the partition of Ω such that $\mathcal{F}=\mathfrak{a}(\pi)$. Then,

$$
\mathbb{E}[X \mid \mathcal{F}](\omega)=\sum_{i=1}^{m} \mathbb{E}\left[X \mid A_{i}\right] \mathbf{1}_{A_{i}}(\omega)
$$

Conditional expectation

- Usually we are given (or we guess) a candidate Z to be $\mathbb{E}[X \mid \mathcal{F}]$, then we need to check conditions 1) and 2) in Definition.
- When $\mathcal{F}=\sigma(\pi), \pi$ a partition it suffices to check that the candidate Z is constant over the elements of π (\mathcal{F}-measurable) and check condition 2) in Definition only for $A_{i} \in \pi$.

Conditional expectation

Example

- Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{4}\right\}$ and $P\left(\omega_{i}\right)=1 / 4, i=1, \ldots, 4$.
- Consider the algebra $\mathcal{F}=\left\{\varnothing, \Omega,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}$ and the random variable X given by

$$
\begin{aligned}
X(\omega) & =\left\{\begin{array}{llc}
9 & \text { if } & \omega=\omega_{1} \\
6 & \text { if } & \omega=\omega_{2}, \omega_{3} \\
3 & \text { if } & \omega=\omega_{4}
\end{array}\right. \\
& =\mathbf{9 1}_{\left\{\omega_{1}\right\}}(\omega)+6 \mathbf{1}_{\left\{\omega_{2}, \omega_{3}\right\}}(\omega)+3 \mathbf{1}_{\left\{\omega_{4}\right\}}(\omega) .
\end{aligned}
$$

- Compute $\mathbb{E}[X \mid \mathcal{F}]$.

Conditional expectation

Suppose X and Y are random variables on $(\Omega, \mathcal{P}(\Omega), P), \mathcal{G}$ is an algebra on $\Omega, a, b \in \mathbb{R}$. Then,
(c) Linearity: $\mathbb{E}[a X+b Y \mid \mathcal{G}]=a \mathbb{E}[X \mid \mathcal{G}]+b \mathbb{E}[Y \mid \mathcal{G}]$.
(2) Law of total expectation: $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E}[X]$.
(3) Independence: If X is independent of \mathcal{G} then $\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X]$.
(3) Measurability: If Y is \mathcal{G}-measurable then $\mathbb{E}[X Y \mid \mathcal{G}]=Y \mathbb{E}[X \mid \mathcal{G}]$.
(5) Tower property: If \mathcal{H} is an algebra on Ω such that $\mathcal{H} \subseteq \mathcal{G}$, then $\mathbb{E}[\mathbb{E}[X \mid \mathcal{H}] \mid \mathcal{G}]=\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}]=\mathbb{E}[X \mid \mathcal{H}]$.

Conditional expectation. Theorem

Let X be a random variable on $(\Omega, \mathcal{P}(\Omega), P)$ and \mathcal{G} an algebra on Ω. Then,

$$
\mathbb{E}[X \mid \mathcal{G}]=\arg \min \left\{\mathbb{E}\left[(X-Y)^{2}\right]: Y \text { being } \mathcal{G} \text {-measurable }\right\} .
$$

The conditional expectation is the best prediction of X based on the information contained in \mathcal{G}, in the sense of minimizing the L^{2} error (variance).

Conditional expectation. Definition

Let $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t=0, \ldots, T}$ be a filtration on $(\Omega, \mathcal{P}(\Omega), P)$. A stochastic process $X=\{X(t)\}_{t=0, \ldots, T}$ is a ($\left.\mathbb{F}-\right)$ martingale if
(2) X is \mathbb{F}-adapted.
(2) For $t \in\{0, \ldots, T\}, s \geq 0, t+s \in\{0, \ldots, T\}$ we have

$$
\mathbb{E}\left[X(t+s) \mid \mathcal{F}_{t}\right]=X(t) .
$$

- Intuitively, the best forecast of the process at some future time $t+s$ given today's information \mathcal{F}_{t} is the value of the process today.

Conditional expectation

- An \mathbb{F}-adapted process X is called a (sub) supermartingale if

$$
\mathbb{E}\left[X(t+s) \mid \mathcal{F}_{t}\right](\geq) \leq X(t)
$$

- If $\# \Omega=+\infty$ then we need to impose that $\mathbb{E}[|X(t)|]<\infty$ for all $t=0, \ldots, T$.
- In the previous definitions we can change $X(t+s)$ by $X(t+1)$.

Conditional expectation. Proposition

[Martingale transform or stochastic integral] Let $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t=0, \ldots, T}$ be a filtration on $(\Omega, \mathcal{P}(\Omega), P)$. Let H be an \mathbb{F}-predictable process and M an \mathbb{F}-martingale. Then, the process Y defined by $Y_{0}=c$ (a constant) and

$$
\begin{aligned}
Y(t) & =\sum_{s=1}^{t} H(s)(M(s)-M(s-1)) \\
& =\sum_{s=1}^{t} H(s) \Delta M(s), \quad t=1, \ldots, T,
\end{aligned}
$$

is an \mathbb{F}-martingale with $\mathbb{E}[Y(t)]=c$.

Thank you!

