Single Period Financial Markets. Model specifications.

STK-MAT 3700/4700 An Introduction to Mathematical Finance
O. Tymoshenko

University of Oslo
Department of Mathematics

Oslo 2022.10.4

UiO : University of Oslo

Contents

(1) Model Specifications
(2) Dominant trading strategies
(3) Linear pricing measures
4. Law of one price
(5) Arbitrage opportunity

Model Specifications

Introduction

Single period models are

- Unrealistic (prices change almost continuously in time)
- Mathematically simple (linear algebra + discrete probability)
- Useful (easily illustrate many economic principles observed in real markets)

Model specifications

A single period model of financial markets is specified by the following ingredients:
(1) Initial date $(t=0)$ and a terminal date $(t=1)$.
(2) A finite sample space $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}$ with $K \in \mathbb{N}$.

- Each ω represents a possible state of the economy/world. (mutually exclusive)
- At $t=0$ the investor does not know the state of the world.
- Financial assets have a constant value at $t=0$, but its value will depend on $\omega \in \Omega$ at time $t=1$. (random variables)
(3) A probability measure P (that is, a function $P: \Omega \rightarrow[0,1]$ with
$\sum_{i=1}^{K} P\left(\omega_{i}\right)=1$), which we additionally assume to satisfy $P(\omega)>0, \omega \in \Omega$.
(3) A bank account process $B=\{B(t)\}_{t=0,1}=\{B(0), B(1)\}$, where with $B(0)=1$ and $B(1)$ is a random variable with $B(1, \omega)>0$. In fact, one usually finds that $B(1) \geq 1$.

Model specifications

Definition 1 (continuation)

Then, one has that

$$
r=(B(1)-B(0)) / B(0)=B(1)-1 \geq 0 .
$$

Moreover, a usual assumption is that $B(1)$ and r are constants.
5. A price process $S=\{S(t)\}_{t=0,1}=\{S(0), S(1)\}$ where

$$
S(t)=\left(S_{1}(t), \cdots, S_{N}(t)\right)^{T},
$$

and $N \geq 1$ is the number of risky assets.
You may think of these assets as stocks.

- At $t=0$: the investor knows the value of the stocks, i.e., $S(0)$ are constants.
- At $t=1$: the prices $S(1)$ are random variables, whose actual realizations become known to the investor only at time $t=1$.

Model specifications

Definition 1 (continuation)
S represents the price of the risky assets because, usually, for all $j=1, \ldots, N$ there exists $\omega_{1}(j)$ and $\omega_{2}(j)$ in Ω such that

$$
S_{j}\left(1, \omega_{1}(j)\right)<S_{j}(0)<S_{j}\left(1, \omega_{2}(j)\right)
$$

Note that $S_{j}(0)=S_{j}(0, \omega), \omega \in \Omega$, because $S_{j}(0)$ is constant.

Model specifications

A trading strategy is a vector $H=\left(H_{0}, H_{1}, \cdots, H_{N}\right)^{T}$, where

- $H_{0}:=$ Amount of money invested in the bank account.
- $H_{n}:=$ Number of units of security n held between $t=0$ and $t=1$, $n=1, \ldots, N$.
- Note that $H_{n}, n=0, \ldots, N$ can be negative: borrowing/short selling.
- Moreover, $H_{n}, n=0, \ldots, N$ are constants because these are decision taken at $t=0$.

Model specifications

The value process $V=\{V(t)\}_{t=0,1}$, is the total value of the portfolio, associated to a trading strategy H, at each t, which is given by

$$
\begin{equation*}
V(t)=H_{0} B(t)+\sum_{n=1}^{N} H_{n} S_{n}(t), \quad t=0,1 . \tag{1}
\end{equation*}
$$

- Note that $V(0)$ is constant and $V(1)$ is a random variable.

Model specifications

The gain process G is the random variable describing the total profit/loss generated by a trading strategy H between $t=0$ and $t=1$ and is given by

$$
\begin{align*}
G & =H_{0}(B(1)-B(0))+\sum_{n=1}^{N} H_{n}\left(S_{n}(1)-S_{n}(0)\right) \\
& =H_{0} r+\sum_{n=1}^{N} H_{n} \Delta S_{n} . \tag{2}
\end{align*}
$$

- Note that

$$
\begin{equation*}
V(1)=V(0)+G . \tag{3}
\end{equation*}
$$

- Moreover, the change in V is due to the changes in S, no addition/withdraw of funds allowed.

Model specifications

A numeraire is a financial asset used to measure the value of all other assets in the market, i.e., the price of all financial assets are expressed in units of numeraire.

- We will use the bank account as numeraire.
- As a consequence, $B(t)=1, t=0,1$, and the quantities S, V and G will have their discounted versions (normalized market).
The discounted price process $S^{*}=\left\{S^{*}(t)\right\}_{t=0,1}$ is given by

$$
\begin{equation*}
S_{n}^{*}(t)=\frac{S_{n}(t)}{B(t)}, \quad n=1, \ldots, N, t=0,1 . \tag{4}
\end{equation*}
$$

Model specifications

The discounted value process $V^{*}=\left\{V^{*}(t)\right\}_{t=0,1}$ is given by

$$
\begin{equation*}
V^{*}(t)=\frac{V(t)}{B(t)}, \quad n=1, \ldots, N, t=0,1 . \tag{5}
\end{equation*}
$$

The discounted gains process G^{*} is given by

$$
\begin{equation*}
G^{*}=H_{0}\left(B^{*}(1)-B^{*}(0)\right)+\sum_{n=1}^{N} H_{n}\left(S_{n}^{*}(1)-S_{n}^{*}(0)\right)=\sum_{n=1}^{N} H_{n} \Delta S_{n}^{*} \tag{6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
V^{*}(1)=V^{*}(0)+G^{*} \tag{7}
\end{equation*}
$$

Model specifications

In a single period financial market model with $\# \Omega=K$ and N risky assets, the payoff matrix $S(1, \Omega)$ is defined to be

$$
S(1, \Omega)=\left(\begin{array}{cccc}
B\left(1, \omega_{1}\right) & S_{1}\left(1, \omega_{1}\right) & \cdots & S_{N}\left(1, \omega_{1}\right) \\
\vdots & \vdots & & \vdots \\
B\left(1, \omega_{K}\right) & S_{1}\left(1, \omega_{K}\right) & \cdots & S_{N}\left(1, \omega_{K}\right)
\end{array}\right) \in \mathbb{R}^{K \times(N+1)} .
$$

- Note that, together with $B(0)$ and $S(0)=\left(S_{1}(0), \ldots ., S_{N}(0)\right)^{T}, S(1, \Omega)$ fully characterizes the market model.
- One can also consider the matrix

$$
S(0, \Omega)=\left(\begin{array}{cccc}
B(0) & S_{1}(0) & \cdots & S_{N}(0) \\
\vdots & \vdots & & \vdots \\
B(0) & S_{1}(0) & \cdots & S_{N}(0)
\end{array}\right) \in \mathbb{R}^{K \times(N+1)},
$$

with the first row repeated K times.

Model specifications

- This way of specifying the market model emphasizes the linear algebra point of view on financial market models on finite probability spaces. That is:
- Random variables are represented as elements in \mathbb{R}^{K}.
- N random variables (or a N -dimensional random vector) are represented as elements in $\mathbb{R}^{K \times N}$.
- Constants (degenerate random variables) can be represented as elements in \mathbb{R}^{K} with all components being equal.
- We also consider the discounted payoff matrix $S^{*}(1, \Omega)$ in an obvious way.
- Note that $V(1), V^{*}(1), G, G^{*} \in \mathbb{R}^{K}$ associated to the trading strategy $H \in \mathbb{R}^{N+1}$ are given by

$$
\begin{aligned}
V(1) & =S(1, \Omega) H, \quad V^{*}(1) & =S^{*}(1, \Omega) H, \\
G & =\Delta S(\Omega) H, \quad \text { and } \quad G^{*} & =\Delta S^{*}(\Omega) H,
\end{aligned}
$$

where $\Delta S(\Omega):=S(1, \Omega)-S(0, \Omega)$, and $\Delta S^{*}(\Omega):=S^{*}(1, \Omega)$ $-S^{*}(0, \Omega)$.

Model specifications

- A probability measure Q can also be seen as an element in \mathbb{R}^{K}.
- Q induces a linear functional on the set of random variables $\mathbb{E}_{Q}[\cdot]: \mathbb{R}^{K} \rightarrow \mathbb{R}$, called expectation under Q, given by

$$
\mathbb{E}_{Q}[Z]=\sum_{k=1}^{K} Q\left(\omega_{k}\right) Z\left(\omega_{k}\right)=\sum_{k=1}^{K} Q_{k} Z_{k}=Q^{T} Z=Z^{T} Q .
$$

- The expected value of the random vector of (discounted) assets $\bar{S}(1):=\left(B(1), S_{1}(1), \ldots, S_{N}(1)\right)^{T}$ is given by

$$
\mathbb{E}_{Q}[\bar{S}(1)]=S^{T}(1, \Omega) Q, \quad\left(\mathbb{E}_{Q}\left[\bar{S}^{*}(1)\right]=S^{* T}(1, \Omega) Q,\right) .
$$

- Note also that one can write the expected values of $V(1)$ and $V^{*}(1)$ as

$$
\begin{aligned}
\mathbb{E}_{Q}[V(1)] & =H^{T} S^{T}(1, \Omega) Q=Q^{T} S(1, H) H \\
\mathbb{E}_{Q}\left[V^{*}(1)\right] & =H^{T} S^{* T}(1, \Omega) Q=Q^{T} S^{*}(1, H) H
\end{aligned}
$$

Model specifications

Example

- Consider $N=1, K=2\left(\Omega=\left\{\omega_{1}, \omega_{2}\right\}\right), r=1 / 9, B(0)=1$, $B(1)=1+r=\frac{10}{9}, S_{1}(0)=5$ and

$$
S_{1}(1, \omega)=\left\{\begin{array}{ccc}
\frac{20}{3} & \text { if } \quad \omega=\omega_{1} \\
\frac{40}{9} & \text { if } \quad \omega=\omega_{2}
\end{array}=\frac{20}{3} \boldsymbol{1}_{\left\{\omega_{1}\right\}}(\omega)+\frac{40}{9} \boldsymbol{1}_{\left\{\omega_{2}\right\}}(\omega) .\right.
$$

- The previous notation for $S_{1}(1)$ emphasizes the random variable nature of $S_{1}(1)$.
- You can also see $S_{1}(1)$ as an element of $\mathbb{R}^{K}=\mathbb{R}^{2}$, i.e., a column vector $S_{1}(1)=\left(\frac{20}{3}, \frac{40}{9}\right)^{T}$.
- The discounted price process is given by $S_{1}^{*}(0)=S_{1}(0) / B(0)=5 / 1=5$ and

$$
S_{1}^{*}(1)=S_{1}(1) / B(1)=\left(\frac{\frac{20}{3}}{\frac{10}{0}}, \frac{\frac{40}{9}}{\frac{9}{0}}\right)^{T}=(6,4)^{T} .
$$

Model specifications

Example 1

- Next consider a trading strategy $H=\left(H_{0}, H_{1}\right)^{T}$.
- At $t=0$: we have

$$
\begin{aligned}
V(0) & =H_{0} B(0)+H_{1} S_{1}(0)=H_{0}+H_{1} 5 \\
V^{*}(0) & =H_{0}+H_{1} S_{1}^{*}(0)=H_{0}+H_{1} 5 .
\end{aligned}
$$

- At $t=1$: we have

$$
\begin{aligned}
& V(1)=H_{0} B(1)+H_{1} S_{1}(1)=\frac{10}{9} H_{0}+H_{1} S_{1}(1) \\
& \quad=\left\{\begin{array}{lll}
\frac{10}{9} H_{0}+\frac{20}{3} H_{1} & \text { if } & \omega=\omega_{1} \\
\frac{10}{9} H_{0}+\frac{40}{9} H_{1} & \text { if } & \omega=\omega_{2}
\end{array}\right. \\
& \quad \begin{array}{l}
V^{*}(1)=H_{0}+H_{1} S_{1}^{*}(1) \\
=\left\{\begin{array}{lll}
H_{0}+6 H_{1} & \text { if } & \omega=\omega_{1} \\
H_{0}+4 H_{1} & \text { if } & \omega=\omega_{2}
\end{array}\right.
\end{array} .
\end{aligned}
$$

Model specifications

Example 1

$$
\begin{gathered}
G=H_{0} r+H_{1} \Delta S_{1}=\frac{1}{9} H_{0}+H_{1}\left(S_{1}(1)-S_{1}(0)\right) \\
=\left\{\begin{array}{ll}
\frac{1}{9} H_{0}+\left(\frac{20}{3}-5\right) H_{1}=\frac{1}{9} H_{0}+\frac{5}{3} H_{1} & \text { if } \omega=\omega_{1} \\
\frac{1}{9} H_{0}+\left(\frac{40}{9}-5\right) H_{1}=\frac{1}{9} H_{0}-\frac{5}{9} H_{1} & \text { if } \omega=\omega_{2}
\end{array},\right. \\
\quad G^{*}=H_{1} \Delta S_{1}^{*}=H_{1}\left(S_{1}^{*}(1)-S_{1}^{*}(0)\right) \\
\quad=\left\{\begin{array}{ccc}
H_{1}(6-5)=H_{1} & \text { if } & \omega=\omega_{1} \\
H_{1}(4-5)=-H_{1} & \text { if } & \omega=\omega_{2}
\end{array}\right.
\end{gathered}
$$

- Please note that $V(1)=V(0)+G$ and $V^{*}(1)=V^{*}(0)+G^{*}$.

Dominant trading strategies

Dominant trading strategies

The following statements are equivalent

- \exists DTS.
(2) \exists a trading strategy satisfying

$$
\left\{\begin{array}{c}
V(0)=0 \tag{8}\\
V(1, \omega)>0, \quad \forall \omega \in \Omega
\end{array}\right.
$$

© \exists a trading strategy satisfying

$$
\left\{\begin{array}{c}
V(0)<0 \tag{9}\\
V(1, \omega) \geq 0, \quad \forall \omega \in \Omega
\end{array} .\right.
$$

Proof.
Smartboard.

- If in 2. and/or 3. we change V by V^{*} the result still holds.

Dominant trading strategies

- The existence of a dominant trading strategy is also unsatisfactory because leads to "illogical" pricing.
- It is useful to interpret $V(1)$ as the payoff of a contingent claim (think of options) and $V(0)$ as the price of this claim.
- Assume that \hat{H} dominates \widetilde{H}.
- Then, the prices $\widehat{V}(0)$ and $\widetilde{V}(0)$ coincide but the payoffs will satisfy

$$
\widehat{V}(1, \omega)>\widetilde{V}(1, \omega), \quad \omega \in \Omega
$$

- This clearly does not make sense as it provides a sure positive profit with zero initial investment by taking a long position in \widehat{V} and a short position in \widetilde{V}.

Linear pricing measures

- The following concept is useful because it provides a "logical" pricing rule.

A linear pricing measure (LPM) is a non-negative vector $\pi=\left(\pi\left(\omega_{1}\right), \ldots, \pi\left(\omega_{K}\right)\right)^{T}$ such that for every trading strategy $H=\left(H_{0}, H_{1}, \ldots, H_{N}\right)^{T}$ the following holds

$$
\begin{equation*}
V^{*}(0)=\sum_{\omega \in \Omega} \pi(\omega) V^{*}(1, \omega) . \tag{10}
\end{equation*}
$$

- Note that equation (10) can be written as

$$
\begin{equation*}
H_{0}+\sum_{n=1}^{N} H_{n} S_{n}^{*}(0)=\sum_{\omega \in \Omega} \pi(\omega)\left(H_{0}+\sum_{n=1}^{N} H_{n} S_{n}^{*}(1, \omega)\right) . \tag{11}
\end{equation*}
$$

Linear pricing measures

Linear pricing measures

(1) Let π be a LPM. Then, π is a probability measure on $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}$.
(2) π is a $\mathbf{L P M} \Leftrightarrow \pi$ is a probability measure satisfying

$$
\begin{equation*}
S_{n}^{*}(0)=\sum_{\omega \in \Omega} S_{n}^{*}(1, \omega) \pi(\omega)=: \mathbb{E}_{\pi}\left[S_{n}^{*}(1)\right], \quad n=1, \ldots, N \tag{12}
\end{equation*}
$$

Proof.

Smartboard.

Linear pricing measures

- The previous result says that

$$
\begin{align*}
S_{n}^{*}(0) & =\mathbb{E}_{\pi}\left[S_{n}^{*}(1)\right], \quad n=1, \ldots, N, \tag{13}\\
V^{*}(0) & =\mathbb{E}_{\pi}\left[V^{*}(1)\right] . \tag{14}
\end{align*}
$$

- That is, the price/value at time 0 of a security can be obtained by taking expectations under a LPM π of the discounted terminal price/value of the security.
- In this context, equations (13) and (14) just say that the discounted processes S_{n}^{*} and V_{n}^{*} are martingales under π.
- Using a LPM each contingent claim $V(1, \omega)$ has a unique price and a claim that pays more than other for every $\omega \in \Omega$ will have a higher price (logical pricing).

Linear pricing measures and dominant trading strategies

\exists LPM $\Longleftrightarrow \nexists$ DTS.
Proof.
Smartboard.

- Financial market models allowing for DTS are not reasonable.
- But even less reasonable are models allowing for the failure of of the law of one price.

Law of one price

Law of one price

We say that the law of one price (LOP) holds for a financial market model if there do not exist two trading strategies \widehat{H} and \widetilde{H} such that

$$
\left\{\begin{array}{c}
\widehat{V}(0)>\widetilde{V}(0) \tag{15}\\
\widehat{V}(1, \omega)=\widetilde{V}(1, \omega), \quad \forall \omega \in \Omega
\end{array} .\right.
$$

(1) If in (15) we use \widehat{V}^{*} and \widetilde{V}^{*} we get the same concept.
(2) LOP holds \Longrightarrow No ambiguity regarding the price at $t=0(V(0))$ of contingent claims ($V(1)$).
(3) \#two distinct trading strategies yielding the same payoff at $t=1 \Longrightarrow$ LOP holds.
((OP does not hold $\Longrightarrow \exists$ two distinct trading strategies with the same final value but different initial value.

Law of one price and dominant trading strategies

 \nexists DTS \Rightarrow LOP holds.
Proof.

- Suppose LOP does not hold. Then, there exist $\widehat{H}, \widetilde{H}$ such that $\widehat{V}^{*}(0)>\widetilde{V}^{*}(0)$ and $\widehat{V}^{*}(1)=\widetilde{V}^{*}(1)$.
- Since $\widehat{V}^{*}(1)=\widehat{V}^{*}(0)+\widehat{G}^{*}$ and $\widetilde{V}^{*}(1)=\widetilde{V}^{*}(0)+\widetilde{G}^{*}$, we have that $\widehat{G}^{*}<\widetilde{G}^{*}$.
- Define a new trading strategy H by setting $H_{0}=-\sum_{n=1}^{N} H_{n} S_{n}^{*}(0)$, and $H_{n}=\widetilde{H}_{n}-\widehat{H}_{n}, n=1, \ldots, N$.
- Then, $V^{*}(0)=H_{0}+\sum_{n=1}^{N} H_{n} S_{n}^{*}(0)=0$,

$$
V^{*}(1)=V^{*}(0)+\sum_{n=1}^{N}\left(\widetilde{H}_{n}-\widehat{H}_{n}\right) \Delta S_{n}^{*}=\widetilde{G}^{*}-\widehat{G}^{*}>0,
$$

and by Lemma 20 there exists a DTS.

Law of one price and dominant trading strategies

(1) LOP holds \ddagger DTS. That is, the converse of the previous lemma does not hold. It is possible to have DTS and LOP still holds.
(2) If in a model \exists DTS the situation is bad because it leads to illogical pricing and the existence of strategies with a sure positive final value with zero initial investment.
(3) If in a model LOP does not hold the situation is even worse. It also allows for the existence of "suicide strategies", that is, strategies with positive initial investment and sure zero final value. Let $\widehat{H}, \overparen{H}$ such that $\widehat{V}(0)>\widetilde{V}(0)$ and $\widehat{V}(1)=\widetilde{V}(1)$. Then, by the linearity of V with respect to H, we have that $H:=\widehat{H}-\widetilde{H}$ satisfies

$$
V(0)=\widehat{V}(0)-\widetilde{V}(0)>0 \quad \text { and } \quad V(1)=\widehat{V}(1)-\widetilde{V}(1)=0
$$

Example LOP does not hold

Example

- Take $K=2, N=1, r=1, B(0)=1, B(1)=2, S(0)=10$ and

$$
S(1, \omega)=\left\{\begin{array}{lll}
12 & \text { if } & \omega=\omega_{1} \\
12 & \text { if } & \omega=\omega_{2}
\end{array}\right.
$$

That is, $S(1)$ is constant.

- Then,

$$
\begin{align*}
& V(0)=H_{0} B(0)+H_{1} S(0)=H_{0}+10 H_{1}, \tag{16}\\
& V(1)=H_{0} B(1)+H_{1} S(1)=2 H_{0}+12 H_{1} .
\end{align*}
$$

Note that $V(1, \omega)$ is also constant.

- The previous linear system has a unique solution given by

$$
H_{0}=\frac{5}{4} V(1)-\frac{3}{2} V(0), \quad H_{1}=\frac{1}{4} V(0)-\frac{1}{8} V(1) .
$$

Example LOP does not hold

Example 2

- This means that, for fixed $V(1)$, there are an infinite number of strategies (each starting with a different $V(0)$) which yield $V(1) \Longrightarrow$ LOP does not hold.
- In the same model, suppose now that $S\left(1, \omega_{2}\right)=8$.
- Now, in addition to (16) we have

$$
\left.\begin{array}{c}
V\left(1, \omega_{1}\right)=H_{0} B(1)+H_{1} S\left(1, \omega_{1}\right)=2 H_{0}+12 H_{1}, \tag{17}\\
V\left(1, \omega_{2}\right)=H_{0} B(1)+H_{1} S\left(1, \omega_{2}\right)=2 H_{0}+8 H_{1} .
\end{array}\right\}
$$

- For arbitrary $V\left(1, \omega_{1}\right)$ and $V\left(1, \omega_{2}\right)$ the system (17) has a unique solution and taking into account (16) we have that $V(0)$ is uniquely determined \Longrightarrow LOP holds.

Example LOP does not hold

Example 2

- However, for $H=\left(H_{0}, H_{1}\right)^{T}=(10,-1)^{T}$ we have

$$
\begin{aligned}
V(0) & =H_{0}+10 H_{1}=10-10=0, \\
V\left(1, \omega_{1}\right) & =2 H_{0}+12 H_{1}=20-12=8>0, \\
V\left(1, \omega_{2}\right) & =2 H_{0}+12 H_{1}=20-8=12>0 .
\end{aligned}
$$

- Hence, H is a DTS.

Arbitrage opportunity

An arbitrage opportunity (AO) is a trading strategy satisfying:
a) $V(0)=0$.
b) $V(1, \omega) \geq 0, \quad \omega \in \Omega$.
c) $\mathbb{E}[V(1)]>0$.
(c) can be changed by
c') $\exists \omega \in \Omega$ such that $V(1, \omega)>0$.
(2) a), b) c) $\Longleftrightarrow V^{*}(0)=0, V^{*}(1) \geq 0$, and $\mathbb{E}\left[V^{*}(1)\right]>0$.
(3) An AO is a trading strategy

- with zero initial investment,
- without the possibility of bearing a loss
- with a strictly positive profit for at least one of the possible states of the economy.

Arbitrage opportunity

© \exists DTS $\Longrightarrow \exists$ AO.
(2) $\exists \mathrm{AO} \exists \mathrm{DTS}$.

Proof.

(1) By Lemma 20, we know that
\exists of DTS $\Longleftrightarrow \exists$ of H such that $V(0)=0$ and $V(1, \omega)>0, \omega \in \Omega$.
But, if $V(1, \omega)>0, \omega \in \Omega$ then

$$
\mathbb{E}[V(1)]=\sum_{\omega \in \Omega} V(1, \omega) P(\omega)>0
$$

(2) The following example provides a counterexample.

Arbitrage opportunity

Arbitrage opportunity

Example

- Take $K=2, N=1, r=0, B(0)=1, B(1)=1, S(0)=S^{*}(0)=10$ and

$$
S(1, \omega)=S^{*}(1, \omega)=\left\{\begin{array}{lll}
12 & \text { if } & \omega=\omega_{1} \\
10 & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

- Consider the trading strategy $H=\left(H_{0}, H_{1}\right)^{T}=(-10,1)^{T}$, then $V(0)=$ $H_{0} B(0)+H_{1} S(0)=-10+10=0$, and

$$
V(1)=H_{0} B(1)+H_{1} S(1)=\left\{\begin{array}{lll}
-10+12=2 & \text { if } & \omega=\omega_{1} \\
-10+10=0 & \text { if } & \omega=\omega_{2}
\end{array} .\right.
$$

- Hence, H is an arbitrage opportunity.

Arbitrage opportunity

Example 3

- By Lemma 26 we know that the model does not contain DTS if and only if \exists LPM.
- A LPM $\pi=\left(\pi_{1}, \pi_{2}\right)^{T}$ must satisfy $\pi \geq 0$ and

$$
10=S^{*}(0)=\mathbb{E}_{\pi}\left[S^{*}(1)\right]=12 \pi_{1}+10 \pi_{2}
$$

- Hence, $\pi=(0,1)^{T}$ is a LPM and we can conclude.

Arbitrage opportunity

H is an $\mathbf{A O} \Longleftrightarrow G^{*}(\omega) \geq 0, \omega \in \Omega$ and $\mathbb{E}\left[G^{*}\right]>0$.

Thank you!

