STK-MAT3710: Solution to mandatory assignment. Fall 2019

Problem 1. When we multiply out the product, we get

$$E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{4}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} E\left[X_{i} X_{j} X_{k} X_{l}\right]$$

Let us take a closer look at the terms $E[X_iX_jX_kX_l]$. If one of the factors X_i, X_j, X_k, X_l (let us say X_i for simplicity) is different from the others, we get $E[X_iX_jX_kX_l] = E[X_i]E[X_jX_kX_l] = 0$ by independence. Hence the only contributions to the sum are from terms $E[X_iX_jX_kX_l]$ where none of the factors X_i, X_j, X_k, X_l are different from all the others. This leaves only two possibilities; either all four are equal (i.e. $X_i = X_j = X_k = X_l$) or they come in groups of two, e.g, $X_i = X_j$ and $X_k = X_l$. If we fix a number r, the term $E[X_r^4]$ only occurs once in the big sum $\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{l=1}^n E[X_iX_jX_kX_l]$ above (we need all four indices i, j, k, l to be equal to r), but if we fix two different numbers p and q, with p < q, the term $E[X_p^2X_q^2]$ arises in $6 = \binom{4}{2}$ different ways:

- (i) i = j = p and k = l = q
- (ii) i = k = p and j = l = q
- (iii) i = l = p and j = k = q
- (iv) i = j = q and k = l = p
- (v) i = k = q and k = l = p
- (vi) i = l = q and j = k = q

Summing up the nonzero terms, we get

$$E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{4}\right] = \sum_{r=1}^{n} E\left[X_{r}^{4}\right] + 6\sum_{q=1}^{n} \sum_{p=1}^{q-1} E\left[X_{p}^{2}\right] E\left[X_{q}^{2}\right]$$

Remark: To be absolutely correct, we should perhaps insert a proof that all combinations $X_i X_j X_k X_l$ are integrable. This follows from Theorem 3.5 and Lyapounov's inequality (Corollary 3.23b) in the textbook.

Problem 2 a) By one of De Morgan's laws, we have

$$(A^c \cup B)^c \stackrel{\text{De M.}}{=} ((A^c)^c \cap B^c = A \cap B^c = A \setminus B$$

b) Observe first that if C, D are two disjoint sets in \mathcal{D} , then $C \cup D \in \mathcal{D}$ since

$$C \cup D = C \cup D \cup \emptyset \cup \emptyset \cup \dots$$

is a countable, disjoint union of sets in \mathcal{D} .

We are now ready for the problem. According to part a), $A \setminus B = (A^c \cup B)^c$, and since $B \subseteq A$, the union is disjoint. By the observation above, $A^c \cup B \in \mathcal{D}$, and thus $A \setminus B = (A^c \cup B)^c \in \mathcal{D}$ by (ii).

c) Assume that $\{A_n\}$ is an increasing sequence of sets in \mathcal{D} , and define

$$B_1 = A_1, \quad B_2 = A_2 \setminus A_1, \quad B_3 = A_3 \setminus A_2 \quad \text{etc.}$$

According to b), we have $B_n \in \mathcal{D}$, and since the B_n 's are disjoint, we $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{D}$ from (iii). By construction, $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$, and hence $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{D}$.

d) The are many possibilities, but one is to put $\Omega = \{1, 2, 3, 4\}$ and let

 $\mathcal{D} = \{ A \subseteq \Omega : A \text{ has an even number of elements} \}$

Then \mathcal{D} is easily seen to satisfy (i)-(iii), but \mathcal{D} is *not* a σ -algebra as $\{1,2\}$ and $\{2,3\}$ are both in \mathcal{D} , but their union $\{1,2\} \cup \{2,3\} = \{1,2,3\}$ is not.

e) We have to check the three axioms for σ -algebras:

- (i) $\emptyset \in \mathcal{D}$
- (ii) If $A \in \mathcal{D}$, then $A^c \in \mathcal{D}$.
- (iii) If $\{A_n\}$ is a sequence of sets in \mathcal{D} , then $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{D}$.

The first two are automatically satisfied since \mathcal{D} is a D-system. To check (iii), first observe that since \mathcal{D} is closed under finite intersections, it is also closed under finite unions as $A \cup B = (A^c \cap B^c)^c$ by De Morgan. This means that if we define a new sequence $\{B_n\}$ by $B_n = A_1 \cup A_2 \cup \ldots \cup A_n$, we have an increasing sequence $\{B_n\}$ of sets in \mathcal{D} . By c), the union $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{D}$, and since $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$, we have proved that $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{D}$.

Problem 3. a) Assume first that $I \cap J = \emptyset$. If *n* is the length of $C_{I,\alpha}$ and *k* is the length of $C_{J,\beta}$, then $C_{I,\alpha} \cap C_{J,\beta}$ is a cylinder set of length n + k. Hence

$$P(C_{I,\alpha} \cap C_{J,\beta}) = \frac{1}{2^{n+k}} = \frac{1}{2^n} \cdot \frac{1}{2^k} = P(C_{I,\alpha})P(C_{J,\beta})$$

which means that $C_{I,\alpha}$ and $C_{J,\beta}$ are independent.

For the case $I \cap J \neq \emptyset$, there are two possibilities. If $C_{I,\alpha}$ and $C_{J,\beta}$ contradict each other on an element in $I \cap J$, then $C_{I,\alpha} \cap C_{J,\beta} = \emptyset$, and hence $P(C_{I,\alpha} \cap C_{J,\beta}) = 0$. As $P(C_{I,\alpha})P(C_{J,\beta}) \neq 0$, this proves that $C_{I,\alpha}$ and $C_{J,\beta}$ are dependent in this case. The other possibility is that $C_{I,\alpha}$ and $C_{J,\beta}$ agree on all elements in $I \cap J$. If n is the length of $C_{I,\alpha}$, k is the length of $C_{J,\beta}$, and $m = |I \cap J|$ is the size of the overlap, then $C_{I,\alpha} \cap C_{J,\beta}$ is a cylinder set of length n + k - m. Hence

$$P(C_{I,\alpha} \cap C_{J,\beta}) = \frac{1}{2^{n+k-m}} \neq \frac{1}{2^n} \cdot \frac{1}{2^k} = P(C_{I,\alpha})P(C_{J,\beta})$$

showing that $C_{I,\alpha}$ and $C_{J,\beta}$ is dependent also in this case.

b) There are many ways to argue, but here is one that looks forward to the next part of the problem. Let $A_n = \{\omega \in \Omega : \omega_n = H\}$. Then the sets $\{A_n\}$ are independent (use the same argument as in part a)), and since $P(A_n) = \frac{1}{2}$,

we clearly have $\sum_{n=1}^{\infty} P(A_n) = \infty$. By part (ii) of Borel-Cantelli's lemma, this means that $P[\limsup_n A_n] = 1$. As $\omega \in \limsup_n A_n$ means that $\omega \in A_n$ (i.e. $\omega_n = H$) for infinitely many n, the assertion is proved.

c) We are going to use a slightly more sophisticated version of the argument in part b). We chop up \mathbb{N} into sequences of length n: $I_1 = \{1, 2, \ldots, n\}$, $I_2 = \{n + 1, n + 2, \ldots, 2n\}, \ldots, I_k = \{(k - 1)n + 1, (k - 1)n + 2, \ldots, kn\}$, etc.

Let B_k be the set of all ω 's such that the tuple α occurs on interval I_k in the sense that $\omega_{(k-1)n+1} = \alpha_1$, $\omega_{(k-1)n+2} = \alpha_2$ etc. Then the B_k 's are independent and $P(B_k) = \frac{1}{2^n}$. Clearly, $\sum_{k=1}^{\infty} P(B_k) = \infty$, and by part (ii) of Borel-Cantelli's lemma, we have $P[\limsup_k B_k] = 1$. As $\omega \in \limsup_k B_k$ means that $\omega \in B_k$ for infinitely many k, the assertion is proved.

d) For each *n*-tuple α , let

 $\Omega_{\alpha} = \{ \omega \in \Omega : \alpha \text{ occurs only finitely many times in } \omega \}$

By part c), $P(\Omega_{\alpha}) = 0$. As there are only finitely many *n*-tuples of a given length *n*, the set

$$\Omega_n = \bigcup_{\text{length}(\alpha)=n} \Omega_\alpha$$

must also have probability 0, and so must

$$\Omega' = \bigcup_{n \in \mathbb{N}} \Omega_n$$

\mathbf{As}	

 $\omega \in \Omega' \iff$ there is a tuple α which occurs only finitely many times in ω

the assertion is proved.