STK-MAT3710: Solution to mandatory assignment. Fall 2019

Problem 1. When we multiply out the product, we get

$$
E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{4}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} E\left[X_{i} X_{j} X_{k} X_{l}\right]
$$

Let us take a closer look at the terms $E\left[X_{i} X_{j} X_{k} X_{l}\right]$. If one of the factors $X_{i}, X_{j}, X_{k}, X_{l}$ (let us say X_{i} for simplicity) is different from the others, we get $E\left[X_{i} X_{j} X_{k} X_{l}\right]=E\left[X_{i}\right] E\left[X_{j} X_{k} X_{l}\right]=0$ by independence. Hence the only contributions to the sum are from terms $E\left[X_{i} X_{j} X_{k} X_{l}\right]$ where none of the factors $X_{i}, X_{j}, X_{k}, X_{l}$ are different from all the others. This leaves only two possibilities; either all four are equal (i.e. $X_{i}=X_{j}=X_{k}=X_{l}$) or they come in groups of two, e.g, $X_{i}=X_{j}$ and $X_{k}=X_{l}$. If we fix a number r, the term $E\left[X_{r}^{4}\right]$ only occurs once in the big sum $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} E\left[X_{i} X_{j} X_{k} X_{l}\right]$ above (we need all four indices i, j, k, l to be equal to r), but if we fix two different numbers p and q, with $p<q$, the term $E\left[X_{p}^{2} X_{q}^{2}\right]$ arises in $6=\binom{4}{2}$ different ways:
(i) $i=j=p$ and $k=l=q$
(ii) $i=k=p$ and $j=l=q$
(iii) $i=l=p$ and $j=k=q$
(iv) $i=j=q$ and $k=l=p$
(v) $i=k=q$ and $k=l=p$
(vi) $i=l=q$ and $j=k=q$

Summing up the nonzero terms, we get

$$
E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{4}\right]=\sum_{r=1}^{n} E\left[X_{r}^{4}\right]+6 \sum_{q=1}^{n} \sum_{p=1}^{q-1} E\left[X_{p}^{2}\right] E\left[X_{q}^{2}\right]
$$

Remark: To be absolutely correct, we should perhaps insert a proof that all combinations $X_{i} X_{j} X_{k} X_{l}$ are integrable. This follows from Theorem 3.5 and Lyapounov's inequality (Corollary 3.23 b) in the textbook.

Problem 2 a) By one of De Morgan's laws, we have

$$
\left(A^{c} \cup B\right)^{c} \stackrel{\mathrm{DeM}}{=}\left(\left(A^{c}\right)^{c} \cap B^{c}=A \cap B^{c}=A \backslash B\right.
$$

b) Observe first that if C, D are two disjoint sets in \mathcal{D}, then $C \cup D \in \mathcal{D}$ since

$$
C \cup D=C \cup D \cup \emptyset \cup \emptyset \cup \ldots
$$

is a countable, disjoint union of sets in \mathcal{D}.
We are now ready for the problem. According to part a), $A \backslash B=\left(A^{c} \cup B\right)^{c}$, and since $B \subseteq A$, the union is disjoint. By the observation above, $A^{c} \cup B \in \mathcal{D}$,
and thus $A \backslash B=\left(A^{c} \cup B\right)^{c} \in \mathcal{D}$ by (ii).
c) Assume that $\left\{A_{n}\right\}$ is an increasing sequence of sets in \mathcal{D}, and define

$$
B_{1}=A_{1}, \quad B_{2}=A_{2} \backslash A_{1}, \quad B_{3}=A_{3} \backslash A_{2} \quad \text { etc. }
$$

According to b), we have $B_{n} \in \mathcal{D}$, and since the B_{n} 's are disjoint, we $\bigcup_{n \in \mathbb{N}} B_{n} \in$ \mathcal{D} from (iii). By construction, $\bigcup_{n \in \mathbb{N}} A_{n}=\bigcup_{n \in \mathbb{N}} B_{n}$, and hence $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{D}$.
d) The are many possibilities, but one is to put $\Omega=\{1,2,3,4\}$ and let

$$
\mathcal{D}=\{A \subseteq \Omega: A \text { has an even number of elements }\}
$$

Then \mathcal{D} is easily seen to satisfy (i)-(iii), but \mathcal{D} is not a σ-algebra as $\{1,2\}$ and $\{2,3\}$ are both in \mathcal{D}, but their union $\{1,2\} \cup\{2,3\}=\{1,2,3\}$ is not.
e) We have to check the three axioms for σ-algebras:
(i) $\emptyset \in \mathcal{D}$
(ii) If $A \in \mathcal{D}$, then $A^{c} \in \mathcal{D}$.
(iii) If $\left\{A_{n}\right\}$ is a sequence of sets in \mathcal{D}, then $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{D}$.

The first two are automatically satisfied since \mathcal{D} is a D-system. To check (iii), first observe that since \mathcal{D} is closed under finite intersections, it is also closed under finite unions as $A \cup B=\left(A^{c} \cap B^{c}\right)^{c}$ by De Morgan. This means that if we define a new sequence $\left\{B_{n}\right\}$ by $B_{n}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$, we have an increasing sequence $\left\{B_{n}\right\}$ of sets in \mathcal{D}. By c), the union $\bigcup_{n \in \mathbb{N}} B_{n} \in \mathcal{D}$, and since $\bigcup_{n \in \mathbb{N}} A_{n}=\bigcup_{n \in \mathbb{N}} B_{n}$, we have proved that $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{D}$.

Problem 3. a) Assume first that $I \cap J=\emptyset$. If n is the length of $C_{I, \alpha}$ and k is the length of $C_{J, \beta}$, then $C_{I, \alpha} \cap C_{J, \beta}$ is a cylinder set of length $n+k$. Hence

$$
P\left(C_{I, \alpha} \cap C_{J, \beta}\right)=\frac{1}{2^{n+k}}=\frac{1}{2^{n}} \cdot \frac{1}{2^{k}}=P\left(C_{I, \alpha}\right) P\left(C_{J, \beta}\right)
$$

which means that $C_{I, \alpha}$ and $C_{J, \beta}$ are independent.
For the case $I \cap J \neq \emptyset$, there are two possibilities. If $C_{I, \alpha}$ and $C_{J, \beta}$ contradict each other on an element in $I \cap J$, then $C_{I, \alpha} \cap C_{J, \beta}=\emptyset$, and hence $P\left(C_{I, \alpha} \cap C_{J, \beta}\right)=0$. As $P\left(C_{I, \alpha}\right) P\left(C_{J, \beta}\right) \neq 0$, this proves that $C_{I, \alpha}$ and $C_{J, \beta}$ are dependent in this case. The other possibility is that $C_{I, \alpha}$ and $C_{J, \beta}$ agree on all elements in $I \cap J$. If n is the length of $C_{I, \alpha}, k$ is the length of $C_{J, \beta}$, and $m=|I \cap J|$ is the size of the overlap, then $C_{I, \alpha} \cap C_{J, \beta}$ is a cylinder set of length $n+k-m$. Hence

$$
P\left(C_{I, \alpha} \cap C_{J, \beta}\right)=\frac{1}{2^{n+k-m}} \neq \frac{1}{2^{n}} \cdot \frac{1}{2^{k}}=P\left(C_{I, \alpha}\right) P\left(C_{J, \beta}\right)
$$

showing that $C_{I, \alpha}$ and $C_{J, \beta}$ is dependent also in this case.
b) There are many ways to argue, but here is one that looks forward to the next part of the problem. Let $A_{n}=\left\{\omega \in \Omega: \omega_{n}=H\right\}$. Then the sets $\left\{A_{n}\right\}$ are independent (use the same argument as in part a), and since $P\left(A_{n}\right)=\frac{1}{2}$,
we clearly have $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$. By part (ii) of Borel-Cantelli's lemma, this means that $P\left[\lim \sup _{n} A_{n}\right]=1$. As $\omega \in \lim \sup _{n} A_{n}$ means that $\omega \in A_{n}$ (i.e. $\omega_{n}=H$) for infinitely many n, the assertion is proved.
c) We are going to use a slightly more sophisticated version of the argument in part b). We chop up \mathbb{N} into sequences of length n : $I_{1}=\{1,2, \ldots, n\}$, $I_{2}=\{n+1, n+2, \ldots, 2 n\}, \ldots, I_{k}=\{(k-1) n+1,(k-1) n+2, \ldots, k n\}$, etc.

Let B_{k} be the set of all ω 's such that the tuple α occurs on interval I_{k} in the sense that $\omega_{(k-1) n+1}=\alpha_{1}, \omega_{(k-1) n+2}=\alpha_{2}$ etc. Then the B_{k} 's are independent and $P\left(B_{k}\right)=\frac{1}{2^{n}}$. Clearly, $\sum_{k=1}^{\infty} P\left(B_{k}\right)=\infty$, and by part (ii) of Borel-Cantelli's lemma, we have $P\left[\lim \sup _{k} B_{k}\right]=1$. As $\omega \in \lim \sup _{k} B_{k}$ means that $\omega \in B_{k}$ for infinitely many k, the assertion is proved.
d) For each n-tuple α, let

$$
\Omega_{\alpha}=\{\omega \in \Omega: \alpha \text { occurs only finitely many times in } \omega\}
$$

By part c), $P\left(\Omega_{\alpha}\right)=0$. As there are only finitely many n-tuples of a given length n, the set

$$
\Omega_{n}=\bigcup_{\text {length }(\alpha)=n} \Omega_{\alpha}
$$

must also have probability 0 , and so must

$$
\Omega^{\prime}=\bigcup_{n \in \mathbb{N}} \Omega_{n}
$$

As
$\omega \in \Omega^{\prime} \Longleftrightarrow$ there is a tuple α which occurs only finitely many times in ω
the assertion is proved.

