
STK-MAT3710: Solution to mandatory
assignment. Fall 2019

Problem 1. When we multiply out the product, we get

E

( n∑
i=1

Xi

)4
 =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E [XiXjXkXl]

Let us take a closer look at the terms E [XiXjXkXl]. If one of the factors
Xi, Xj , Xk, Xl (let us say Xi for simplicity) is different from the others, we
get E [XiXjXkXl] = E [Xi]E [XjXkXl] = 0 by independence. Hence the only
contributions to the sum are from terms E [XiXjXkXl] where none of the factors
Xi, Xj , Xk, Xl are different from all the others. This leaves only two possibilities;
either all four are equal (i.e. Xi = Xj = Xk = Xl) or they come in groups of two,
e.g, Xi = Xj and Xk = Xl. If we fix a number r, the term E[X4

r ] only occurs
once in the big sum

∑n
i=1

∑n
j=1

∑n
k=1

∑n
l=1E [XiXjXkXl] above (we need all

four indices i, j, k, l to be equal to r), but if we fix two different numbers p and
q, with p < q, the term E

[
X2
pX

2
q

]
arises in 6 =

(
4
2

)
different ways:

(i) i = j = p and k = l = q

(ii) i = k = p and j = l = q

(iii) i = l = p and j = k = q

(iv) i = j = q and k = l = p

(v) i = k = q and k = l = p

(vi) i = l = q and j = k = q

Summing up the nonzero terms, we get

E

( n∑
i=1

Xi

)4
 =

n∑
r=1

E
[
X4
r

]
+ 6

n∑
q=1

q−1∑
p=1

E
[
X2
p

]
E
[
X2
q

]
Remark: To be absolutely correct, we should perhaps insert a proof that all
combinations XiXjXkXl are integrable. This follows from Theorem 3.5 and
Lyapounov’s inequality (Corollary 3.23b) in the textbook.

Problem 2 a) By one of De Morgan’s laws, we have

(Ac ∪B)c
De M.

= ((Ac)c ∩Bc = A ∩Bc = A \B

b) Observe first that if C,D are two disjoint sets in D, then C ∪D ∈ D since

C ∪D = C ∪D ∪ ∅ ∪ ∅ ∪ . . .

is a countable, disjoint union of sets in D.
We are now ready for the problem. According to part a), A\B = (Ac∪B)c,

and since B ⊆ A, the union is disjoint. By the observation above, Ac ∪B ∈ D,
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and thus A \B = (Ac ∪B)c ∈ D by (ii).

c) Assume that {An} is an increasing sequence of sets in D, and define

B1 = A1, B2 = A2 \A1, B3 = A3 \A2 etc.

According to b), we have Bn ∈ D, and since the Bn’s are disjoint, we
⋃
n∈NBn ∈

D from (iii). By construction,
⋃
n∈NAn =

⋃
n∈NBn, and hence

⋃
n∈NAn ∈ D.

d) The are many possibilities, but one is to put Ω = {1, 2, 3, 4} and let

D = {A ⊆ Ω : A has an even number of elements}

Then D is easily seen to satisfy (i)-(iii), but D is not a σ-algebra as {1, 2} and
{2, 3} are both in D, but their union {1, 2} ∪ {2, 3} = {1, 2, 3} is not.

e) We have to check the three axioms for σ-algebras:

(i) ∅ ∈ D

(ii) If A ∈ D, then Ac ∈ D .

(iii) If {An} is a sequence of sets in D, then
⋃
n∈NAn ∈ D.

The first two are automatically satisfied since D is a D-system. To check (iii),
first observe that since D is closed under finite intersections, it is also closed
under finite unions as A ∪ B = (Ac ∩ Bc)c by De Morgan. This means that
if we define a new sequence {Bn} by Bn = A1 ∪ A2 ∪ . . . ∪ An, we have an
increasing sequence {Bn} of sets in D. By c), the union

⋃
n∈NBn ∈ D, and

since
⋃
n∈NAn =

⋃
n∈NBn, we have proved that

⋃
n∈NAn ∈ D.

Problem 3. a) Assume first that I ∩ J = ∅. If n is the length of CI,α and k is
the length of CJ,β , then CI,α ∩ CJ,β is a cylinder set of length n+ k. Hence

P (CI,α ∩ CJ,β) =
1

2n+k
=

1

2n
· 1

2k
= P (CI,α)P (CJ,β)

which means that CI,α and CJ,β are independent.
For the case I ∩ J 6= ∅, there are two possibilities. If CI,α and CJ,β con-

tradict each other on an element in I ∩ J , then CI,α ∩ CJ,β = ∅, and hence
P (CI,α ∩ CJ,β) = 0. As P (CI,α)P (CJ,β) 6= 0, this proves that CI,α and CJ,β
are dependent in this case. The other possibility is that CI,α and CJ,β agree
on all elements in I ∩ J . If n is the length of CI,α, k is the length of CJ,β , and
m = |I ∩J | is the size of the overlap, then CI,α ∩CJ,β is a cylinder set of length
n+ k −m. Hence

P (CI,α ∩ CJ,β) =
1

2n+k−m
6= 1

2n
· 1

2k
= P (CI,α)P (CJ,β)

showing that CI,α and CJ,β is dependent also in this case.

b) There are many ways to argue, but here is one that looks forward to the
next part of the problem. Let An = {ω ∈ Ω : ωn = H}. Then the sets {An}
are independent (use the same argument as in part a)), and since P (An) = 1

2 ,
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we clearly have
∑∞
n=1 P (An) =∞. By part (ii) of Borel-Cantelli’s lemma, this

means that P [lim supnAn] = 1. As ω ∈ lim supnAn means that ω ∈ An (i.e.
ωn = H) for infinitely many n, the assertion is proved.

c) We are going to use a slightly more sophisticated version of the argument
in part b). We chop up N into sequences of length n: I1 = {1, 2, . . . , n},
I2 = {n + 1, n + 2, . . . , 2n}, . . . , Ik = {(k − 1)n + 1, (k − 1)n + 2, . . . , kn},
etc.

Let Bk be the set of all ω’s such that the tuple α occurs on interval Ik in the
sense that ω(k−1)n+1 = α1, ω(k−1)n+2 = α2 etc. Then the Bk’s are independent

and P (Bk) = 1
2n . Clearly,

∑∞
k=1 P (Bk) =∞, and by part (ii) of Borel-Cantelli’s

lemma, we have P [lim supk Bk] = 1. As ω ∈ lim supk Bk means that ω ∈ Bk for
infinitely many k, the assertion is proved.

d) For each n-tuple α, let

Ωα = {ω ∈ Ω : α occurs only finitely many times in ω}

By part c), P (Ωα) = 0. As there are only finitely many n-tuples of a given
length n, the set

Ωn =
⋃

length(α)=n

Ωα

must also have probability 0, and so must

Ω′ =
⋃
n∈N

Ωn

As

ω ∈ Ω′ ⇐⇒ there is a tuple α which occurs only finitely many times in ω

the assertion is proved.
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