STK-MAT3710: Trial Exam 1, Fall 2019: Solution

Problem 1: a) The characteristic function is

$$
\phi_{X}(t)=E\left[e^{i t X}\right]=e^{i t \cdot 0} \frac{1}{2}+e^{i t \cdot 1} \frac{1}{4}+e^{i t(-1)} \frac{1}{4}=\frac{1}{2}+\frac{e^{i t}+e^{-i t}}{4}=\frac{1}{2}(1+\cos t) .
$$

b) Using the independence, we have

$$
\begin{gathered}
\phi_{S_{n}}(t)=E\left[e^{i t S_{n}}\right]=E\left[e^{i \frac{t}{\sqrt{n}} X_{1}} e^{i \frac{t}{\sqrt{n}} X_{2}} \cdot \ldots \cdot e^{i \frac{t}{\sqrt{n}} X_{n}}\right] \\
=E\left[e^{i \frac{t}{\sqrt{n}} X_{1}}\right] E\left[e^{i \frac{t}{\sqrt{n}} X_{2}}\right] \ldots \cdot E\left[e^{i \frac{t}{\sqrt{n}} X_{n}}\right]=\left(\phi\left(\frac{t}{\sqrt{n}}\right)\right)^{n}=\frac{1}{2^{n}}\left(1+\cos \left(\frac{t}{\sqrt{n}}\right)\right)^{n} .
\end{gathered}
$$

c) The Taylor expansion for cosine is $\cos x=1-\frac{x^{2}}{2}+o\left(x^{2}\right)$, and hence
$\phi_{S_{n}}(t)=\frac{1}{2^{n}}\left(1+\cos \left(\frac{t}{\sqrt{n}}\right)\right)^{n}=\frac{1}{2^{n}}\left(1+1-\frac{t^{2}}{2 n}+o\left(\frac{t^{2}}{n}\right)\right)^{n}=\left(1-\frac{t^{2}}{4 n}+o\left(\frac{t^{2}}{n}\right)\right)^{n}$.
Consequently (e.g. by Lemma 6.34)

$$
\phi_{S_{n}}(t)=\left(1-\frac{t^{2}}{4 n}+o\left(\frac{t^{2}}{n}\right)\right)^{n} \rightarrow e^{-\frac{t^{2}}{4}}
$$

As $e^{-\frac{t^{2}}{4}}$ is the characteristic function of a normal distribution with mean 0 and variance $\sigma^{2}=\frac{1}{2}$, the result follows from Lévy's Continuity Theorem.

Problem 2. a) Y_{n} is clearly adapted, and since $\left|\Delta X_{k}\right|<1$, we have $\left|Y_{n}\right|<2^{n}$, and hence Y_{n} is integrable. To prove the submartingale property, note that

$$
Y_{n+1}=\prod_{k=0}^{n}\left(1+\Delta X_{k}\right)=Y_{n}\left(1+\Delta X_{n}\right)
$$

As Y_{n} is \mathcal{F}_{n}-measurable, we get
$E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=E\left[Y_{n}\left(1+\Delta X_{n}\right) \mid \mathcal{F}_{n}\right]=Y_{n} E\left[1+\Delta X_{n} \mid \mathcal{F}_{n}\right]=Y_{n}\left(1+E\left[\Delta X_{n} \mid \mathcal{F}_{n}\right]\right)$.
Note that since $\left\{X_{n}\right\}$ is a submartingale, $E\left[\Delta X_{n} \mid \mathcal{F}_{n}\right] \geq 0$, and hence $(1+$ $\left.E\left[\Delta X_{n} \mid \mathcal{F}_{n}\right]\right) \geq 1$. Also, since $\left|\Delta X_{k}\right|<1$, we have $Y_{n}>0$. Thus

$$
E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n}\left(1+E\left[\Delta X_{n} \mid \mathcal{F}_{n}\right]\right) \geq Y_{n}
$$

which shows that $\left\{Y_{n}\right\}$ is a submartingale.
b) If ΔX_{n} is independent of \mathcal{F}_{n}, then $E\left[\Delta X_{n} \mid \mathcal{F}_{n}\right]=E\left[\Delta X_{n}\right]=m_{n}$. Hence by calculations similar to those in b), we get

$$
E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\left.Z_{n} \frac{1+\Delta X_{n}}{1+m_{n}} \right\rvert\, \mathcal{F}_{n}\right]=\frac{Z_{n}}{1+m_{n}} E\left[1+\Delta X_{n} \mid \mathcal{F}_{n}\right]=Z_{n}
$$

which shows that Z_{n} is a martingale.
Problem 3. a) Let X be a binomial random variable; i.e. $P[X=1]=P[X=$ $-1]=\frac{1}{2}$. Put $X_{n}=Y_{n}=X$; then $X_{n}+Y_{n}=2 X$ for all n, and $\left\{X_{n}+Y_{n}\right\}$ clearly converges in distribution to $2 X$. Also, $\left\{X_{n}\right\}$ converges in distribution to X. Choose Y to be an independent copy of Y. Then $\left\{Y_{n}\right\}$ converges in distribution to Y (as they all have the same distribution), but as we have already seen, $\left\{X_{n}+Y_{n}\right\}$ converges to $2 X$ in distribution, and not to $X+Y$ (these distributions are not the same as $P[2 X=2]=P[2 X=-2]=\frac{1}{2}$ and $P[X+Y=2]=$ $\left.P[X+Y=-2]=\frac{1}{4}, P[X+Y=0]=\frac{1}{2}\right)$.
b) Assume that X_{n} converges to X in distribution; then $E\left[f\left(X_{n}\right)\right] \rightarrow E[f(X)]$ for all bounded continuous functions f. Thus
$\phi_{X_{n}}(t)=E\left[e^{i t X_{n}}\right]=E\left[\cos \left(t X_{n}\right)+i \sin \left(t X_{n}\right)\right] \rightarrow E[\cos (t X)+i \sin (t X)]=\phi_{X}(t)$ as $x \mapsto \sin (t x)$ and $x \mapsto \cos (t x)$ are bounded, continuous functions.
c) As X_{n}, Y_{n} and X, Y are mutually independent, we have

$$
\phi_{X_{n}+Y_{n}}(t)=\phi_{X_{n}}(t) \phi_{Y_{n}}(t) \rightarrow \phi_{X}(t) \phi_{Y}(t)=\phi_{X+Y}(t) .
$$

By Lévy's Continuity Theorem, $X_{n}+Y_{n}$ converges in distribution to $X+Y$ (the condition that ϕ_{X+Y} is continuous at 0 is satisfied since ϕ_{X} and ϕ_{Y} are continuous at 0).

Problem 4: a) Let M be the maximum of $\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{k}\right|$. Then

$$
\begin{equation*}
\left|s_{n}-s_{n}^{k}\right|=\left|\frac{a_{1}+a_{2}+\cdots+a_{k}}{\sqrt{n}}\right| \leq \frac{M k}{\sqrt{n}} . \tag{1}
\end{equation*}
$$

It suffices to show that for every $\epsilon>0$, we have

$$
\left|\limsup _{n \rightarrow \infty} s_{n}-\limsup _{n \rightarrow \infty} s_{n}^{k}\right| \leq \epsilon .
$$

Given an ϵ, inequality (1) above shows us that there is an N such that $\left|s_{n}-s_{n}^{k}\right|<$ ϵ when $n \geq N$. This means that $\left|\sup _{m>n} s_{m}-\sup _{m>n} s_{m}^{k}\right| \leq \epsilon$ for all $n \geq N$. But then $\left|\lim _{n \rightarrow \infty} \sup _{m \geq n} s_{m}-\lim _{n \rightarrow \infty} \sup _{m \geq n} s_{m}^{k}\right| \leq \epsilon$, which, by definition of \limsup, is just another way of saying that $\left|\lim \sup _{n \rightarrow \infty} s_{n}-\lim \sup _{n \rightarrow \infty} s_{n}^{k}\right| \leq \epsilon$.
b) Since the random variables

$$
S_{n}^{k}=\frac{X_{k}+X_{k+1}+\ldots+X_{n}}{\sqrt{n}}
$$

are $\mathcal{F}_{k}^{*}=\sigma\left(X_{k}, X_{k+1}, \ldots\right)$-measurable, so is $\lim _{\sup _{n \rightarrow \infty}} S_{n}^{k}$. By a),

$$
\limsup _{n \rightarrow \infty} S_{n}=\limsup _{n \rightarrow \infty} S_{n}^{k}
$$

and hence $\lim \sup _{n \rightarrow \infty} S_{n}$ is \mathcal{F}_{k}-measurable for all k, which means that it is measurable with respect to the tail σ-algebra \mathcal{F}_{∞}^{*}. Hence

$$
\Lambda=\left\{\omega: \limsup _{n \rightarrow \infty} S_{n}(\omega) \in B\right\}
$$

belongs to \mathcal{F}_{∞}^{*}, and is a tail event. By Borel/Kolmogorov's Zero-One Law (Theorem 5.22), Λ can only have probability 0 or 1 .

