
STK-MAT3710: Trial Exam 1, Fall 2019:
Solution

Problem 1: a) The characteristic function is
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b) Using the independence, we have
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c) The Taylor expansion for cosine is cosx = 1− x2

2 + o(x2), and hence
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Consequently (e.g. by Lemma 6.34)
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As e−
t2

4 is the characteristic function of a normal distribution with mean 0 and
variance σ2 = 1

2 , the result follows from Lévy’s Continuity Theorem.

Problem 2. a) Yn is clearly adapted, and since |∆Xk| < 1, we have |Yn| < 2n,
and hence Yn is integrable. To prove the submartingale property, note that

Yn+1 =

n∏
k=0

(1 + ∆Xk) = Yn(1 + ∆Xn) .

As Yn is Fn-measurable, we get

E[Yn+1|Fn] = E [Yn (1 + ∆Xn) |Fn] = YnE [1 + ∆Xn|Fn] = Yn(1+E [∆Xn|Fn]) .

Note that since {Xn} is a submartingale, E[∆Xn|Fn] ≥ 0, and hence (1 +
E [∆Xn|Fn]) ≥ 1. Also, since |∆Xk| < 1, we have Yn > 0. Thus

E[Yn+1|Fn] = Yn(1 + E [∆Xn|Fn]) ≥ Yn ,
which shows that {Yn} is a submartingale.

b) If ∆Xn is independent of Fn, then E[∆Xn|Fn] = E[∆Xn] = mn. Hence
by calculations similar to those in b), we get
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which shows that Zn is a martingale.

Problem 3. a) Let X be a binomial random variable; i.e. P [X = 1] = P [X =
−1] = 1

2 . Put Xn = Yn = X; then Xn+Yn = 2X for all n, and {Xn+Yn} clearly
converges in distribution to 2X. Also, {Xn} converges in distribution to X.
Choose Y to be an independent copy of Y . Then {Yn} converges in distribution
to Y (as they all have the same distribution), but as we have already seen,
{Xn+Yn} converges to 2X in distribution, and not to X+Y (these distributions
are not the same as P [2X = 2] = P [2X = −2] = 1

2 and P [X + Y = 2] =
P [X + Y = −2] = 1

4 , P [X + Y = 0] = 1
2 ).

b) Assume thatXn converges toX in distribution; then E[f(Xn)]→ E[f(X)]
for all bounded continuous functions f . Thus

φXn
(t) = E

[
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]
= E[cos(tXn)+i sin(tXn)]→ E[cos(tX)+i sin(tX)] = φX(t)

as x 7→ sin(tx) and x 7→ cos(tx) are bounded, continuous functions.
c) As Xn, Yn and X,Y are mutually independent, we have

φXn+Yn
(t) = φXn

(t)φYn
(t)→ φX(t)φY (t) = φX+Y (t) .

By Lévy’s Continuity Theorem, Xn + Yn converges in distribution to X + Y
(the condition that φX+Y is continuous at 0 is satisfied since φX and φY are
continuous at 0).

Problem 4: a) Let M be the maximum of |a1|, |a2|, . . . , |ak|. Then

|sn − skn| =
∣∣∣∣a1 + a2 + · · ·+ ak√

n
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n
. (1)

It suffices to show that for every ε > 0, we have

| lim sup
n→∞

sn − lim sup
n→∞

skn| ≤ ε .

Given an ε, inequality (1) above shows us that there is an N such that |sn−skn| <
ε when n ≥ N . This means that | supm≥n sm − supm≥n s

k
m| ≤ ε for all n ≥ N .

But then | limn→∞ supm≥n sm−limn→∞ supm≥n s
k
m| ≤ ε, which, by definition of

lim sup, is just another way of saying that | lim supn→∞ sn−lim supn→∞ skn| ≤ ε.
b) Since the random variables
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are F∗k = σ(Xk, Xk+1, . . .)-measurable, so is lim supn→∞ Sk
n. By a),
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and hence lim supn→∞ Sn is Fk-measurable for all k, which means that it is
measurable with respect to the tail σ-algebra F∗∞. Hence

Λ = {ω : lim sup
n→∞

Sn(ω) ∈ B}
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belongs to F∗∞, and is a tail event. By Borel/Kolmogorov’s Zero-One Law (Theo-
rem 5.22), Λ can only have probability 0 or 1.
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