STK-MAT3710: Trial Exam 1, Fall 2019: Solution

Problem 1: a) The characteristic function is

$$\phi_X(t) = E[e^{itX}] = e^{it \cdot 0} \frac{1}{2} + e^{it \cdot 1} \frac{1}{4} + e^{it(-1)} \frac{1}{4} = \frac{1}{2} + \frac{e^{it} + e^{-it}}{4} = \frac{1}{2}(1 + \cos t) .$$

b) Using the independence, we have

$$\phi_{S_n}(t) = E\left[e^{itS_n}\right] = E\left[e^{i\frac{t}{\sqrt{n}}X_1}e^{i\frac{t}{\sqrt{n}}X_2} \cdot \dots \cdot e^{i\frac{t}{\sqrt{n}}X_n}\right]$$
$$= E\left[e^{i\frac{t}{\sqrt{n}}X_1}\right] E\left[e^{i\frac{t}{\sqrt{n}}X_2}\right] \cdot \dots \cdot E\left[e^{i\frac{t}{\sqrt{n}}X_n}\right] = \left(\phi(\frac{t}{\sqrt{n}})\right)^n = \frac{1}{2^n}\left(1 + \cos(\frac{t}{\sqrt{n}})\right)^n .$$

c) The Taylor expansion for cosine is $\cos x = 1 - \frac{x^2}{2} + o(x^2)$, and hence

$$\phi_{S_n}(t) = \frac{1}{2^n} \left(1 + \cos(\frac{t}{\sqrt{n}}) \right)^n = \frac{1}{2^n} \left(1 + 1 - \frac{t^2}{2n} + o(\frac{t^2}{n}) \right)^n = \left(1 - \frac{t^2}{4n} + o(\frac{t^2}{n}) \right)^n$$

Consequently (e.g. by Lemma 6.34)

$$\phi_{S_n}(t) = \left(1 - \frac{t^2}{4n} + o\left(\frac{t^2}{n}\right)\right)^n \to e^{-\frac{t^2}{4}}$$

As $e^{-\frac{t^2}{4}}$ is the characteristic function of a normal distribution with mean 0 and variance $\sigma^2 = \frac{1}{2}$, the result follows from Lévy's Continuity Theorem.

Problem 2. a) Y_n is clearly adapted, and since $|\Delta X_k| < 1$, we have $|Y_n| < 2^n$, and hence Y_n is integrable. To prove the submartingale property, note that

$$Y_{n+1} = \prod_{k=0}^{n} (1 + \Delta X_k) = Y_n (1 + \Delta X_n) .$$

As Y_n is \mathcal{F}_n -measurable, we get

$$E[Y_{n+1}|\mathcal{F}_n] = E[Y_n(1+\Delta X_n)|\mathcal{F}_n] = Y_n E[1+\Delta X_n|\mathcal{F}_n] = Y_n(1+E[\Delta X_n|\mathcal{F}_n]).$$

Note that since $\{X_n\}$ is a submartingale, $E[\Delta X_n | \mathcal{F}_n] \ge 0$, and hence $(1 + E[\Delta X_n | \mathcal{F}_n]) \ge 1$. Also, since $|\Delta X_k| < 1$, we have $Y_n > 0$. Thus

$$E[Y_{n+1}|\mathcal{F}_n] = Y_n(1 + E[\Delta X_n|\mathcal{F}_n]) \ge Y_n$$

which shows that $\{Y_n\}$ is a submartingale.

b) If ΔX_n is independent of \mathcal{F}_n , then $E[\Delta X_n | \mathcal{F}_n] = E[\Delta X_n] = m_n$. Hence by calculations similar to those in b), we get

$$E[Z_{n+1}|\mathcal{F}_n] = E\left[Z_n \frac{1+\Delta X_n}{1+m_n} |\mathcal{F}_n\right] = \frac{Z_n}{1+m_n} E\left[1+\Delta X_n |\mathcal{F}_n\right] = Z_n ,$$

which shows that Z_n is a martingale.

Problem 3. a) Let X be a binomial random variable; i.e. $P[X = 1] = P[X = -1] = \frac{1}{2}$. Put $X_n = Y_n = X$; then $X_n + Y_n = 2X$ for all n, and $\{X_n + Y_n\}$ clearly converges in distribution to 2X. Also, $\{X_n\}$ converges in distribution to X. Choose Y to be an *independent* copy of Y. Then $\{Y_n\}$ converges in distribution to Y (as they all have the same distribution), but as we have already seen, $\{X_n + Y_n\}$ converges to 2X in distribution, and not to X + Y (these distributions are not the same as $P[2X = 2] = P[2X = -2] = \frac{1}{2}$ and $P[X + Y = 2] = P[X + Y = -2] = \frac{1}{4}$, $P[X + Y = 0] = \frac{1}{2}$).

b) Assume that X_n converges to X in distribution; then $E[f(X_n)] \to E[f(X)]$ for all bounded continuous functions f. Thus

$$\phi_{X_n}(t) = E\left[e^{itX_n}\right] = E\left[\cos(tX_n) + i\sin(tX_n)\right] \to E\left[\cos(tX) + i\sin(tX)\right] = \phi_X(t)$$

as $x \mapsto \sin(tx)$ and $x \mapsto \cos(tx)$ are bounded, continuous functions.

c) As X_n, Y_n and X, Y are mutually independent, we have

$$\phi_{X_n+Y_n}(t) = \phi_{X_n}(t)\phi_{Y_n}(t) \to \phi_X(t)\phi_Y(t) = \phi_{X+Y}(t)$$

By Lévy's Continuity Theorem, $X_n + Y_n$ converges in distribution to X + Y (the condition that ϕ_{X+Y} is continuous at 0 is satisfied since ϕ_X and ϕ_Y are continuous at 0).

Problem 4: a) Let M be the maximum of $|a_1|, |a_2|, \ldots, |a_k|$. Then

$$|s_n - s_n^k| = \left|\frac{a_1 + a_2 + \dots + a_k}{\sqrt{n}}\right| \le \frac{Mk}{\sqrt{n}}$$
 (1)

It suffices to show that for every $\epsilon > 0$, we have

$$\left|\limsup_{n \to \infty} s_n - \limsup_{n \to \infty} s_n^k\right| \le \epsilon \; .$$

Given an ϵ , inequality (1) above shows us that there is an N such that $|s_n - s_n^k| < \epsilon$ when $n \ge N$. This means that $|\sup_{m\ge n} s_m - \sup_{m\ge n} s_m^k| \le \epsilon$ for all $n \ge N$. But then $|\lim_{n\to\infty} \sup_{m\ge n} s_m - \lim_{n\to\infty} \sup_{m\ge n} s_m^k| \le \epsilon$, which, by definition of $\limsup_{n\to\infty} s_n - \limsup_{n\to\infty} s_n - \limsup_{n\to\infty} s_n - \limsup_{n\to\infty} s_n^k| \le \epsilon$.

b) Since the random variables

$$S_n^k = \frac{X_k + X_{k+1} + \ldots + X_n}{\sqrt{n}}$$

are $\mathcal{F}_k^* = \sigma(X_k, X_{k+1}, \ldots)$ -measurable, so is $\limsup_{n \to \infty} S_n^k$. By a),

$$\limsup_{n \to \infty} S_n = \limsup_{n \to \infty} S_n^k ,$$

and hence $\limsup_{n\to\infty} S_n$ is \mathcal{F}_k -measurable for all k, which means that it is measurable with respect to the tail σ -algebra \mathcal{F}^*_{∞} . Hence

$$\Lambda = \{ \omega : \limsup_{n \to \infty} S_n(\omega) \in B \}$$

belongs to \mathcal{F}_{∞}^* , and is a tail event. By Borel/Kolmogorov's Zero-One Law (Theorem 5.22), Λ can only have probability 0 or 1.