STKMAT3710: Trial Exam 3, Fall 2109

Problem 1: Let X be the binomial random varaible given by $P[X=-1]=$ $P[X=1]=\frac{1}{2}$.
a) Find a real expression for the characteristic function of X.
b) Assume that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of independent random variables with the same distribution as X. Find the characteristic function of

$$
S_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{n}}
$$

c) Use the result in b) to show directly that S_{n} converges in distribution to a normal distribution ("show directly" means that you are not allowed to use a version of the Central Limit Theorem).

Problem 2: Let $\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$ be integrable, independent, and identically distributed random variables, and put $Y_{0}=0$ and $Y_{n}=\sum_{k=1}^{n} X_{k}$ for $1 \leq k \leq N$. Define $T: \Omega \rightarrow\{0,1,2, \ldots, N\}$ by

$$
T(\omega)=\left\{\begin{array}{l}
\text { the smallest } \mathrm{n} \text { such that } Y_{n} \geq 10 \text { if such an } n \text { exists } \\
N \text { otherwise }
\end{array}\right.
$$

Let $m=E\left[X_{i}\right]$ be the common mean for the X_{i} 's. Look at the three cases $m \geq 0, m=0$, and $m \leq 0$. What can you say about the sign of $E\left[Y_{T}\right]$ in each case?

Problem 3: In this problem you may need the following version of the Fourier Inversion Formula: If f is a density function with an integrable characteristic function ϕ, then

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi(t) e^{-i x t} d t
$$

a) Let ϕ be the characteristic function of a random variable Y. Show that if $t \phi(t)$ is integrable, then Y has a differentiable density function ϕ.
b) Let X and Z_{ϵ} be two independent random variables, where Z_{ϵ} is normally distributed with mean 0 and variance ϵ^{2}. Let $Y_{\epsilon}=X+Z_{\epsilon}$. Show that $Y_{\epsilon}=X+Z_{\epsilon}$ has a differentiable density function.
c) Show that Y_{ϵ} converges in distribution to X as $\epsilon \rightarrow 0$.

Problem 4: In this problem $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of random variables converging in distribution to Y. Let F_{Y} and $F_{X_{n}}$ be the distribution functions of Y and X_{n}, respectively.
a) Show that if a is a continuity point for the distribution function F_{Y} of Y, then $\lim _{n \rightarrow \infty} F_{X_{n}}(a-)=F_{Y}(a)$ (recall that $\left.F(a-)=\lim _{x \uparrow a} F(x)\right)$.
b) Show that

$$
P\left[\limsup X_{n} \geq a\right] \geq P[Y \geq a]
$$

for all $a \in \mathbb{R}$.

Problem 5.

a) Each day we are going to choose a number at random. The first day we choose the number from the set $\{1\}$, the second day from the set $\{1,2\}$, the third day from the set $\{1,2,3\}$ etc. The choices are independent and each day all available numbers are equally probable. What is the probability that 1 gets chosen infinitely many times?
b) We repeat the experiment, but now we on day n choose from the set $\left\{1,2, \ldots, n^{2}\right\}$ instead. What is now the probability of getting infinitely many 1 's?

