STK-MAT3710: Extra problems to Chapter 2

Problem 1:

a) Show that

$$
\begin{aligned}
& (-\infty, x)=\bigcup_{n \in \mathbb{N}}\left(-\infty, x-\frac{1}{n}\right] \\
& (-\infty, x]=\bigcap_{n \in \mathbb{N}}\left(-\infty, x+\frac{1}{n}\right)
\end{aligned}
$$

b) Assume that (Ω, \mathcal{F}, P) is a probability space. Prove that the following are equivalent for a function $X: \Omega \rightarrow \mathbb{R}$:
(i) X is a random variable.
(ii) $\{\omega: X(\omega)<x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$.
(iii) $\{\omega: X(\omega)>x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$.
(ii) $\{\omega: X(\omega) \geq x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$.

Problem 2: Assume that (Ω, \mathcal{F}, P) is a probability space and that $X: \Omega \rightarrow \mathbb{R}$ is a random variable:
a) Show that $\{\omega: X(\omega)=x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$.
b) Show that the function

$$
Y(\omega)=\left\{\begin{array}{cc}
\frac{1}{X(\omega)} & \text { if } X(\omega) \neq 0 \\
0 & \text { if } X(\omega)=0
\end{array}\right.
$$

is a random variable.

