STK-MAT3710: Extra problems to Chapter 2

Problem 1:

a) Show that

$$(-\infty, x) = \bigcup_{n \in \mathbb{N}} (-\infty, x - \frac{1}{n}]$$
$$(-\infty, x] = \bigcap_{n \in \mathbb{N}} (-\infty, x + \frac{1}{n})$$

- b) Assume that (Ω, \mathcal{F}, P) is a probability space. Prove that the following are equivalent for a function $X \colon \Omega \to \mathbb{R}$:
 - (i) X is a random variable.
 - (ii) $\{\omega \colon X(\omega) < x\} \in \mathcal{F} \text{ for all } x \in \mathbb{R}.$
 - (iii) $\{\omega \colon X(\omega) > x\} \in \mathcal{F} \text{ for all } x \in \mathbb{R}.$
 - (ii) $\{\omega \colon X(\omega) \ge x\} \in \mathcal{F} \text{ for all } x \in \mathbb{R}.$

Problem 2: Assume that (Ω, \mathcal{F}, P) is a probability space and that $X : \Omega \to \mathbb{R}$ is a random variable:

- a) Show that $\{\omega \colon X(\omega) = x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$.
- b) Show that the function

$$Y(\omega) = \begin{cases} \frac{1}{X(\omega)} & \text{if } X(\omega) \neq 0\\ 0 & \text{if } X(\omega) = 0 \end{cases}$$

is a random variable.