STK-MAT3710 Extra Problem

Problem: Assume that X, Y are two sets and that $f: X \rightarrow Y$ is a function. Recall that if $B \subseteq Y$, the inverse image of B under f is defined by

$$
f^{-1}(B)=\{x \in X: f(x) \in B\}
$$

a) Show that $f^{-1}(\emptyset)=\emptyset$ and $f^{-1}(Y)=X$.
b) Prove that $f^{-1}\left(B^{c}\right)=\left(f^{-1}(B)\right)^{c}$.
c) Assume that $\left\{B_{i}\right\}_{i \in I}$ is a family of subsets of Y. Prove that

$$
f^{-1}\left(\bigcup_{i \in I} B_{i}\right)=\bigcup_{i \in I} f^{-1}\left(B_{i}\right) \quad \text { and } \quad f^{-1}\left(\bigcap_{i \in I} B_{i}\right)=\bigcap_{i \in I} f^{-1}\left(B_{i}\right)
$$

