STK-MAT3710/4710 Formula sheet

Families of sets

σ -algebra \mathcal{F} :

Monotone class \mathcal{M} :

- (i) $\emptyset \in \mathcal{F}$ (ii) $A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$
- (i) $A_n \in \mathcal{M}$ increasing \Longrightarrow $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$
- (iii) $A_n \in \mathcal{F} \text{ for all } n \Longrightarrow$ $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$

(ii) $A_n \in \mathcal{M}$ decreasing \Longrightarrow $\bigcap_{n \in \mathbb{N}} A_n \in \mathcal{M}$

Monotone Class Theorem: If \mathcal{A} is an algebra, then $\sigma(\mathcal{A}) = \mathcal{M}(\mathcal{A})$.

Independence

Family $\{A_i\}_{i\in I}$ of sets: $P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1})P(A_{i_2}) \cdot \ldots \cdot P(A_{i_k})$ for all finite subsets $\{i_1, i_2, \ldots, i_k\}$ of IFamily $\{X_i\}_{i\in I}$ of random variables: $[X_{i_1} \leq x_1], [X_{i_2} \leq x_2], \ldots, [X_{i_k} \leq x_k]$ independent for all finite subsets $\{i_1, i_2, \ldots, i_k\}$ of I and all $x_1, x_2, \ldots, x_k \in \mathbb{R}$.

Distributions

Distribution function $F_X: F_X(x) = P[X \le x]$ Density function $f_X: F_X(x) = \int_{-\infty}^x f_X(y) dy$ Distribution $\mu_X: \mu_X(B) = P[X \in B]$ Lebesgue-Stieltjes integral: $\int_{-\infty}^{\infty} f(x) dF_X = \int_{-\infty}^{\infty} f(x) d\mu_X = E[f(X)]$ Characteristic function $\phi_X: \phi_X(t) = E[e^{itX}]$ Taylor expansion: If $E[|X|^n] < \infty$, then $\phi^{(k)}(0) = i^k E[X^k]$ for $k \le n$, and $\phi_X(t) = \sum_{k=0}^n \frac{1}{k!} E[X^k](it)^k + o(t^n)$. Gaussian distribution $N(\mu, \sigma^2)$: Density function: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, characteristic function: $\phi(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}}$ Lévy's Inversion Theorem: $\bar{F}(b) - \bar{F}(a) = \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \frac{e^{-ibt} - e^{-iat}}{-2\pi it} \phi(t) e^{-\frac{\epsilon^2 t^2}{2}} dt$ Lévy's Continuity Theorem: If $\phi_{X_n}(t) \to \phi(t)$ and ϕ is continuous at 0, then

 X_n converges in distribution to a random variable X with $\phi_X = \phi$.

Modes of convergence

Convergence a.s.: $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ for all ω in a set of probability 1. **Convergence in probability:** $\lim_{n\to\infty} P[|X_n - X| \ge \epsilon] = 0$ for all $\epsilon > 0$. **Convergence in expectation:** $\lim_{n\to\infty} E[|X_n - X|] = 0$.

Convergence in distribution: $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all continuity points x of F_X . Equivalently: $E[f(X_n)] \to E[f(X)]$ for all bounded, continuous f (this is also called *weak convergence*).

Relationships: If $\{X_n\}$ converges to X a.s. or in expectation, then $\{X_n\}$ converges to X in probability. If $\{X_n\}$ converges to X a.s. or in probability, then $\{X_n\}$ converges to X in distribution. If $\{X_n\}$ converges to X in probability, there is a subsequence $\{X_{n_k}\}$ that converges to X a.s.

Convergence Theorems

Monotone Convergence Theorem: If $X_n \ge 0$ and $X_n \uparrow X$ a.s., then $E[X] = \lim_{n\to\infty} E[X_n]$.

Fatou's Lemma: If $X_n \ge 0$, then $\liminf_{n\to\infty} E[X_n] \ge E[\liminf_{n\to\infty} X_n]$. Dominated Convergence Theorem: If $|X_n| \le Y$ for an integrable r.v. Y, and $X_n \to X$ a.s. or in probability, then $E[X] = \lim_{n\to\infty} E[X_n]$.

Limit theorems

Below $S_n = X_1 + X_2 + \ldots + X_n$.

Weak law of large numbers: $\{X_n\}$ a sequence of independent random variables with $E[X_j] = 0$ and $E[X_j^2] \leq \sigma^2$. Then $\frac{S_n}{n} \to 0$ in probability.

Strong law of large numbers: $\{X_n\}$ a sequence of independent random variables with $E[X_j] = 0$ and $E[X_j^4] \le M$. Then $\frac{S_n}{n} \to 0$ a.s. Central limit theorem (i.i.d. version): $\{X_n\}$ a sequence of independent,

Central limit theorem (i.i.d. version): $\{X_n\}$ a sequence of independent, identically distributed random variables with $E[X_j] = \mu$ and $\operatorname{Var}(X) = \sigma^2$. Then $\frac{S_n - \mu n}{\sigma \sqrt{n}} \to N(0, 1)$ in distribution.

Central limit theorem (Lyapounov version): $\{X_n\}$ a sequence of independent random variables with $E[X_j] = 0$ and $E[X_j^2] = \sigma_j^2$. Put $s_n^2 = \sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2$. Assume that $\gamma_j = E[|X_j|^3] < \infty$ and that $\frac{\sum_{j=1}^n \gamma_j}{s_n^3} \to 0$. Then $\frac{S_n}{s_n} \to N(0, 1)$ in distribution.

Inequalities

Chebyshev's Inequality: For $\lambda > 0$: $P[|X| \ge \lambda] \le \frac{1}{\lambda^p} E[|X|^p]$ Schwarz's Inequality: $E[|XY|] \le (E[X^2])^{\frac{1}{2}} (E[Y^2])^{\frac{1}{2}}$ Lyapounov's Inequalities: For $1 \le p < q$:

(i)
$$E[|X|]^q \le E[|X|^q]$$
 (ii) $E[|X|^p]^{\frac{1}{p}} \le E[|X|^q]^{\frac{1}{q}}$

Jensen's Inequality: For convex ϕ : $\phi(E[X|\mathcal{G}]) \leq E[\phi(X)|\mathcal{G}]$.

lim sup **and** lim inf

$$\lim_{n \to \infty} \inf_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{k \ge n} a_k \qquad \qquad \lim_{n \to \infty} \sup_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k \ge n} a_k$$
$$\lim_{n \to \infty} \inf_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k \qquad \qquad \lim_{n \to \infty} \sup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k$$

Tail Events

Borel-Cantelli's Lemma:

- (i) If $\sum_{n=1}^{\infty} P(B_n) < \infty$, then $P[\limsup_{n \to \infty} B_n] = 0$.
- (ii) If the B_n 's are independent and $\sum_{n=1}^{\infty} P(B_n) = \infty$, then $P[\limsup_{n \to \infty} B_n] = 1$.

Borel/Kolmogorov's 0-1-Law: If the X_n 's are independent and C is a tail event, then P(C) is either 0 or 1.

Conditional expectation

Definition: $Z = E[X|\mathcal{G}]$ iff Z is \mathcal{G} -measurable and $\int_{\Lambda} Z \, dP = \int_{\Lambda} X \, dP$ for all $\Lambda \in \mathcal{G}$.

Tower property: If $\mathcal{G}_1 \subseteq \mathcal{G}_2$, then $E[E[X|\mathcal{G}_2]|\mathcal{G}_1] = E[X|\mathcal{G}_1]$

Stopping times and martingales

Stopping time: $[T \leq n] \in \mathcal{F}_n$ for all n (equivalently: $[T = n] \in \mathcal{F}_n$ for all n) σ -algebra $\mathcal{F}_T: \mathcal{F}_T = \{\Lambda \in \mathcal{F} : \Lambda \cap [T \leq n] \in \mathcal{F}_n$ for all $n\}$ Submartingale property: $E[X_t|\mathcal{F}_s] \geq X_s$ for s < tSupermartingale property: $E[X_t|\mathcal{F}_s] \leq X_s$ for s < tMartingale property: $E[X_t|\mathcal{F}_s] = X_s$ for s < t. Martingale Maximal Inequality: For a positive submartingale X_n : $\lambda P[\max_{n \leq N} X_n \geq \lambda] \leq E[X_N]$ Martingale Convergence Theorem: If $\{X_n\}_{n \in \mathbb{N}}$ is a submartingale and $\sup_{n \in \mathbb{N}} E[X_n] < \infty$, then $X_n \to X_\infty$ a.s. where X_∞ is integrable.

Uniform integrability

Definition: For all $\epsilon > 0$ there is an N such that $\int_{[|X_{\alpha}| \ge N]} |X_{\alpha}| dP < \epsilon$ for all $\alpha \in I$.

Alternative definition: $\{E[|X_{\alpha}|]\}_{\alpha \in I}$ is bounded and $\lim_{P(\Lambda)\to 0} \int_{\Lambda} |X_{\alpha}| dP = 0$ uniformly in α .

Main Theorem: The following are equivalent when $X_n \to X$ in probability:

- (i) $\{X_n\}_{n \in \mathbb{N}}$ is uniformly integrable.
- (ii) $E[|X_n X|] \rightarrow 0.$
- (iii) $E[|X_n|] \to E[|X|].$

Series and such

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges for } p > 1.$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + e^c \frac{x^{n+1}}{(n+1)!}$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + (-1)^{n+1} \frac{\cos c}{(2n+3)!} x^{2n+3}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + (-1)^{n+1} \frac{\cos c}{(2n+2)!} x^{2n+2}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{1}{(1+c)^{n+1}(n+1)} x^{n+1}$$

$$\operatorname{comma: If \lim_{n \to \infty} x_n = x_n \text{ then } \lim_{n \to \infty} (1 + \frac{z_n}{n})^n = e^z$$

Lemma: If $\lim_{n\to\infty} z_n = z$, then $\lim_{n\to\infty} \left(1 + \frac{z_n}{n}\right)^n = e^z$.