
STK-MAT3710: The Fourier Inversion Theorem

The textbook defines the Fourier transform of a random variable X as

φ(t) = E
[
eitX

]
If X has a density f , this becomes

φ(t) =

∫ ∞
−∞

eitxf(x) dx

The Fourier Inversion Theorem says that under suitable conditions, we can for
almost all x recover the original density f from its Fourier transform φ by

f(x) = lim
T→∞

1

2π

∫ T

−T
φ(t)e−itx dt (1)

It would take us too far afield to prove this theorem in the present course, but
I would like to give you some indication of why it is true.

If we write φ as

φ(t) =

∫ ∞
−∞

eityf(y) dy

(we need the variable x for other purposes), we get

1

2π

∫ T

−T
φ(t)eitx dt =

1

2π

∫ T

−T

(∫ ∞
−∞

eityf(y) dy

)
e−itx dt

=
1

2π

∫ T

−T

(∫ ∞
−∞

eit(y−x)f(y)

)
dy dt =

1

2π

∫ ∞
−∞

f(y)

(∫ T

−T
eit(y−x) dt

)
dy

where we in the last step have changed the order of integration (as this is just
an informal calculation, we are not very careful with conditions). Integrating
the inner integral, we get∫ T

−T
eit(y−x) dt =

eiT (y−x) − e−iT (y−x)

i(y − x)

=

(
cos[T (y − x)] + i sin[T (y − x)]

)
−
(

cos[−T (y − x)] + i sin[−T (y − x)]
)

i(y − x)

=
2 sin[T (y − x)]

y − x
,

and hence we have

1

2π

∫ T

−T
φ(t)eitx dt =

1

π

∫ ∞
−∞

f(y)
sin[T (y − x)]

y − x
dy =

∫ ∞
−∞

f(y)gT (y − x) dy ,

where gT is the integral kernel

gT (u) =
sin(Tu)

πu
.
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The figure below shows gT for T = 100, and it is typical for what gT looks like
for large values of T : There is a sharp peak as the origin and smaller waves
running off to ±∞.

As T increases, the peak gets higher and higher and narrower and narrower,
but some properties are conserved: For instance, if we introduce a new variable
z = Tu, we get du = dz

T , and hence∫ ∞
−∞

gT (u) du =

∫ ∞
−∞

sin(Tu)

πu
du =

∫ ∞
−∞

sin z

πz
dz = 1

(we are using that
∫∞
−∞

sinu
u du = π — this is not an elementary integral, but

can be computed with techniques from complex analysis). This means that the
integral ∫ ∞

−∞
f(y)gT (y − x) dy

can be thought of as a weighted average of the values of f . Since gT has a
peak at the origin, the values f(y) where y is close to x get the highest weights,
and as the peak gets higher and higher and narrower and narrower, this effect
becomes increasingly stronger as T increases. Hence it is not surprising that

f(x) = lim
T→∞

∫ ∞
−∞

f(y)gT (y − x) dy ,

at least at points x where f is continuous (if f has a jump discontinuity at x,
we will get 1

2

[
f(x+) + f(x−)

]
instead since the kernel gT is symmetric.) As

lim
T→∞

∫ ∞
−∞

f(y)gT (y − x) dy = lim
T→∞

1

2π

∫ T

−T
φ(t)e−itx dt ,

we have now completed our heuristic argument for the inversion formula (1).

Formal proofs of the Fourier Inversion Theorem can be found in a number
of books, e.g. T. Körner: Fourier Analysis, H.L. Montgomery: Early Fourier
Analysis, and P. Billingsley: Probability and Measure. Be aware that there is
no ultimate version of the Fourier Inversion Theorem, and that different books
will present slightly different versions. Also be aware that some books define

2



the Fourier transform by

φ(t) =

∫ ∞
−∞

f(x)e2πitx dx

(note the 2π in the exponent). The inversion formula then becomes

f(x) = lim
T→∞

∫ T

−T
φ(t)e−2πitx dt (2)

3


