STK-MAT3710: Trial Exam 2. Fall 2019

Problem 1. Let X_{1}, X_{2} and Y_{1}, Y_{2} be random variables. Assume that X_{1} and Y_{1} have the same distribution, and so do X_{2} og Y_{2}.
a) Show that if X_{1} and X_{2} are independent, and the same is the case for Y_{1} and Y_{2}, then $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$ have the same distribution.
b) Show by an example that if we drop the condition that the variables are independent, then $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$ need not have the same distribution.

Problem 2. Let (Ω, \mathcal{F}, P) be a probability space. A function $H: \Omega \rightarrow \Omega$ is called measure preserving if the following two conditions are satisfied:
(i) If $A \in \mathcal{F}$, then $H^{-1}(A) \in \mathcal{F}$.
(ii) If $A \in \mathcal{F}$, then $P\left(H^{-1}(A)\right)=P(A)$.

If $Y: \Omega \rightarrow \mathbb{R}$ is a random variable, we define $Y_{H}: \Omega \rightarrow \mathbb{R}$ by $Y_{H}(\omega)=Y(H(\omega))$.
a) Show that Y_{H} is a random variable.
b) Show that if Y is a discrete, integrable rnadom variable, then $E(Y)=$ $E\left(Y_{H}\right)$.
c) Show that if Y is an integrable random variable, then $E(Y)=E\left(Y_{H}\right)$.

Problem 3. Let $\mathcal{T}=\{0,1,2, \ldots\}$ be a timeline and $\left\{\mathcal{F}_{n}\right\}_{n \in \mathcal{T}}$ a filtration. Assume that $\left\{X_{n}\right\}_{n \in \mathcal{T}}$ is a bounded, adapted, process, and that $\left\{M_{n}\right\}_{n \in \mathcal{T}}$ is a \mathcal{F}_{n}-martingale. Let $\Delta M_{k}=M_{k+1}-M_{k}$ be the forward increment of X at time k.
a) Define a new process $\left\{Y_{n}\right\}$ by $Y_{0}=0$ and $Y_{n}=\sum_{k=0}^{n-1} X_{k} \Delta M_{k}$. Show that $\left\{Y_{n}\right\}$ is an \mathcal{F}_{n}-martingale.
b) Assume that M_{k}^{2} is integrable for all k. Show that the variance of Y_{n} is $\sum_{k=0}^{n-1} E\left[X_{k}^{2} \Delta M_{k}^{2}\right]$.

Problem 4.

a) Assume that $\left\{Y_{n}\right\}$ is a sequence of random variables converging in distribution to a random variable Y. Show that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, then $g\left(Y_{n}\right)$ converges in distribution to $g(Y)$.
In the rest of problem, $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of bounded, independent and identically distributed random variables with first moment $E\left[X_{n}\right]=0$ and second moment $E\left[X_{n}^{2}\right]=\alpha>0$. Note that the X_{n} 's are bounded; i.e. there exists a real number M such that $\left|X_{n}\right| \leq M$.
b) La $P_{n}=\prod_{k=1}^{n}\left(1+\frac{X_{k}}{\sqrt{n}}\right)$. Show that $\log P_{n}$ converges in distribution to a normal distribution. You may use without proof that if U_{n} converges to U in distribution and V_{n} converges to a constant C in probability, then $U_{n}+V_{n}$ converges to $U+C$ in distribution.
c) Show that P_{n} converges in distribution an describe the limit.

