STK-MAT3710: Trial Exam 2. Fall 2019. Solutions

Problem 1. As X_{1} and Y_{1} have the the same distribution, they have the same characteristic function ϕ_{1}, and for the same reason X_{2} and Y_{2} have the same characteristic function ϕ_{2}. By independence,

$$
\phi_{X_{1}+X_{2}}(t)=\phi_{X_{1}}(t) \phi_{X_{2}}(t)=\phi_{1}(t) \phi_{2}(t),
$$

and similarly

$$
\phi_{Y_{1}+Y_{2}}(t)=\phi_{Y_{1}}(t) \phi_{Y_{2}}(t)=\phi_{1}(t) \phi_{2}(t) .
$$

As $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$ have the same characteristic function, they also have the same distribution.
b) Let X_{1} be a random variable that takes values 1 and -1 with probability $\frac{1}{2}$, and let $X_{2}=X_{1}$. Let Y_{1} and Y_{2} be two independent copies of X_{1}. Then $X_{1}+X_{2}$ takes the values 2 and -2 with probability $\frac{1}{2}$ while $Y_{1}+Y_{2}$ takes three values 2,0 , and -2 with probabilities $\frac{1}{4}, \frac{1}{2}$, and $\frac{1}{4}$, respectively,

Problem 2. a) We have

$$
\begin{gathered}
\left\{\omega: Y_{H}(\omega) \leq x\right\}=\{\omega: Y(H(\omega)) \leq x\} \\
=H^{-1}(\{\omega: Y(\omega) \leq x\}) \in \mathcal{F}
\end{gathered}
$$

where we have used that Y is a random variable in combination with condition (i) in the problem.
b) Since $Y=\sum a_{i} \mathbf{1}_{A_{i}}$, we have $E[Y]=\sum a_{i} P\left(A_{i}\right)$. On the other hand,

$$
Y_{H}(\omega)=Y(H(\omega))=\sum a_{i} \mathbf{1}_{A_{i}}(H(\omega))=\sum a_{i} \mathbf{1}_{H^{-1}\left(A_{i}\right)}(\omega)
$$

Hence

$$
E\left[Y_{H}\right]=\sum a_{i} P\left(H^{-1}\left(A_{i}\right)\right)=\sum a_{i} P\left(A_{i}\right)=E[Y]
$$

where we have used property (ii) in the problem.
c) Let

$$
\underline{Y}_{n}=\sum_{n \in \mathcal{Z}} \frac{k}{2^{n}} \mathbf{1}_{\left[k 2^{-n}<Y \leq(k+1) 2^{-n}\right]}
$$

be the lower approximation to Y. Then

$$
\left(\underline{Y}_{n}\right)_{H}=\sum_{n \in \mathcal{Z}} \frac{k}{2^{n}} \mathbf{1}_{H^{-1}\left(\left[k 2^{-n}<Y \leq(k+1) 2^{-n}\right]\right)}
$$

is the corresponding lower approximation of Y_{H} since

$$
H^{-1}\left(\left[k 2^{-n}<Y \leq(k+1) 2^{-n}\right]\right)=\left[k 2^{-n}<Y_{H} \leq(k+1) 2^{-n}\right]
$$

By b), $E\left[\underline{Y}_{n}\right]=E\left[\left(\underline{Y}_{n}\right)_{H}\right]$, and since by definition we have $E\left[\underline{Y}_{n}\right] \rightarrow E[Y]$ and $E\left[\left(\underline{Y}_{n}\right)_{H}\right] \rightarrow E\left[Y_{H}\right]$, we get $E[Y]=E\left[Y_{H}\right]$.

Problem 3. a) Let B be a bound for $\left|X_{n}\right|$. To see that Y is integrable, note that $\left|\Delta M_{k}\right|=\left|M_{k+1}-M_{k}\right| \leq\left|M_{k+1}\right|+\left|M_{k}\right|$, and hence ΔM_{k} is integrable. As

$$
\left|Y_{n}\right|=\left|\sum_{k=0}^{n-1} X_{k} \Delta M_{k}\right| \leq \sum_{k=0}^{n-1}\left|X_{k}\right|\left|\Delta M_{k}\right| \leq B \sum_{k=0}^{n-1}\left|\Delta M_{k}\right|
$$

we see that Y_{n} is integrable. As $\left\{Y_{n}\right\}$ is clearly adapted, it only remains to prove the martingale property. We have

$$
E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=E\left[X_{n} \Delta M_{n} \mid \mathcal{F}_{n}\right]+E\left[Y_{n} \mid \mathcal{F}_{n}\right]=X_{n} E\left[\Delta M_{n} \mid \mathcal{F}_{n}\right]+Y_{n}=Y_{n}
$$

where we have used that X_{n} and Y_{n} are \mathcal{F}_{n}-measurable, and that $E\left[\Delta M_{n} \mid \mathcal{F}_{n}\right]=$ 0 as M is a martingale.
b) Since Y is a martingale $E\left[Y_{n}\right]=E\left[Y_{0}\right]=0$, and hence

$$
\operatorname{Var}\left(Y_{n}\right)=E\left[Y_{n}^{2}\right]=E\left[\left(\sum_{k=0}^{n-1} X_{k} \Delta M_{k}\right)^{2}\right]
$$

As M is square integrable and X is bounded, the sum $\sum_{k=0}^{n-1} X_{k} \Delta M_{k}$ is square integrable, and hence the variance is finite. Multiplying out the parenthesis and regrouping the terms, we get:

$$
\begin{gathered}
\operatorname{Var}\left(Y_{n}\right)=E\left[\left(\sum_{k=0}^{n-1} X_{k} \Delta M_{k}\right)^{2}\right]=E\left[\sum_{i, j=1}^{n-1} X_{i} \Delta M_{i} X_{j} \Delta M_{j}\right] \\
=2 \sum_{1 \leq i<j \leq n-1} E\left[X_{i} \Delta M_{i} X_{j} \Delta M_{j}\right]+\sum_{k=0}^{n-1} E\left[X_{k}^{2} \Delta M_{k}^{2}\right]
\end{gathered}
$$

In the product $X_{i} \Delta M_{i} X_{j} \Delta M_{j}$ all factors are \mathcal{F}_{j}-measurable except ΔM_{j}, and hence by the tower property of conditional expectations:
$E\left[X_{i} \Delta M_{i} X_{j} \Delta M_{j}\right]=E\left[E\left[X_{i} \Delta M_{i} X_{j} \Delta M_{j} \mid \mathcal{F}_{j}\right]\right]=E\left[X_{i} \Delta M_{i} X_{j} E\left[\Delta M_{j} \mid \mathcal{F}_{j}\right]\right]=0$
as $E\left[\Delta M_{j} \mid \mathcal{F}_{j}\right]=0$ since M is a martingale.
Problem 4. a) Since convergence in distribution is the same as weak convergence, it suffices to show that $E\left[f\left(g\left(Y_{n}\right)\right)\right] \rightarrow E[(f(g(Y))]$ for all bounded, continuous functions. But if f is bounded and continuous, so is the composition $f \circ g(x)=f(g(x))$, and as Y_{n} converges weakly to Y, we have $E\left[f\left(g\left(Y_{n}\right)\right)\right] \rightarrow$ $E[(f(g(Y))]$.
b) Put $Y_{n}=\log P(n)$. Using the Taylor expansion $\log (1+x)=x-\frac{x^{2}}{2}+R(x)$, where $R(x)=\frac{x^{3}}{3(1+c)^{3}}$ for some c between 0 and x, we get
$Y_{n}=\log \left(\prod_{k=1}^{n}\left(1+\frac{X_{k}}{\sqrt{n}}\right)\right)=\sum_{k=1}^{n} \log \left(1+\frac{X_{k}}{\sqrt{n}}\right)=\sum_{k=1}^{n}\left(\frac{X_{k}}{\sqrt{n}}-\frac{X_{k}^{2}}{2 n}+R\left(\frac{X_{k}}{\sqrt{n}}\right)\right)$
By the Central Limit Theorem, the first part of the sum, $\sum_{k=1}^{n} \frac{X_{k}}{\sqrt{n}}$, converges in distribution to a normal distribution with mean $E\left[X_{n}\right]=0$ and variance $\operatorname{Var}\left(X_{n}\right)=\alpha>0$. By the Weak Law of Large Numbers, the second part of the sum, $\sum_{k=1}^{n} \frac{X_{k}^{2}}{2 n}$, converges in probability to $\frac{1}{2} E\left[X_{k}^{2}\right]=\frac{\alpha}{2}$. The third part of the sum, $\sum_{k=1}^{n} R\left(\frac{X_{k}}{\sqrt{n}}\right)$, converges pointwise to zero as the following argument shows: As $\left|X_{k}\right|$ is bounded by M, we have $\frac{\left|X_{k}\right|}{\sqrt{n}}<\frac{1}{2}$ for sufficiently large n, and hence $|1+c|>\frac{1}{2}$ in the expression for the error term. For such n, we have

$$
\left|R\left(\frac{X_{k}}{\sqrt{n}}\right)\right| \leq \frac{\left|X_{k}\right|^{3}}{3 \cdot\left(\frac{1}{2}\right)^{3} n^{3 / 2}} \leq \frac{8 M^{3}}{3 n^{3 / 2}}
$$

Hence $\sum_{k=1}^{n} R\left(\frac{X_{k}}{\sqrt{n}}\right) \rightarrow 0$ as we are summing n terms of size $\frac{1}{n^{3 / 2}}$.
This means that Y_{n} is the sum of a term converging in distribution a normal distribution $N(0, \alpha)$ and a term converging in probability to the constant $-\frac{\alpha}{2}$. By the result cited in the problem text, this means that Y_{n} converges in distribution to a $N\left(-\frac{\alpha}{2}, \alpha\right)$ random variable.
c) Combining parts a) and b), we see that $P_{n}=e^{Y_{n}}$ converges in distribution to e^{Z}, where Z is a $N\left(-\frac{\alpha}{2}, \alpha\right)$ random variable.

