UNIVERSITY OF OSLO Faculty of mathematics and natural sciences

Exam in:
STK-MAT3710/4710 - Probability Theory.
Day of examination: Friday, December 11th, 2020.
Examination hours: 15.00-19.00.
This problem set consists of 2 pages.
Appendices: Formula sheet.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All items (Problems 1a, 1b etc.) count equally. If there is a problem you cannot solve, you may still use the result in the sequel. All answers have to be substantiated.

We use \mathbb{N}_{0} to denote the natural numbers with 0 included, i.e. $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}=$ $\{0,1,2,3, \ldots\}$.

Problem 1 (50 points)
In this problem λ is a positive real number.
a) Let Y be a Poisson random variable with intensity λ, i.e. Y is taking values in the nonnegative integers \mathbb{N}_{0}, and

$$
P[Y=n]=\frac{\lambda^{n}}{n!} e^{-\lambda}
$$

for each $n \in \mathbb{N}_{0}$. Show that the characteristic function of Y is

$$
\phi_{Y}(t)=e^{\lambda\left(e^{i t}-1\right)}
$$

b) Find $E[Y]$, e.g. by differentiating ϕ_{Y}.
c) Let $n \in \mathbb{N}$ and assume that $n>\lambda$. Let X_{n} be a random variable taking only two values 0 and 1 with probabilities $P\left[X_{n}=1\right]=\frac{\lambda}{n}$ and $P\left[X_{n}=0\right]=1-\frac{\lambda}{n}$, respectively. Show that the characteristic function of X_{n} is

$$
\phi_{X_{n}}(t)=1+\frac{\lambda}{n}\left(e^{i t}-1\right)
$$

d) Let $S_{n}=X_{n}^{(1)}+X_{n}^{(2)}+\ldots+X_{n}^{(n)}$ be the sum of n independent copies of X_{n}. Find the characteristic function of S_{n}.
e) Show that the sequence $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ converges to Y in distribution (here Y is the random variable in question a)).

Problem 2 (20 points)

In this problem a and b are real numbers such that $b<0<a$. Assume that p is a real number between 0 and 1 , and let X be a random variable taking the values a and b with probabilities $P[X=a]=p, P[X=b]=1-p$, respectively.

Assume that $\left\{X_{j}\right\}_{j \in \mathbb{N}}$ is an independent sequence of copies of X, and define a process $M=\left\{M_{n}\right\}_{n \in \mathbb{N}_{0}}$ by putting $M_{0}=0$ and $M_{n}=\sum_{j=1}^{n} X_{j}$ for $n>0$. Define the filtration $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}_{0}}$ by letting $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $n>0$.
a) For which value of p is M a martingale with respect to the filtration $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}_{0}}$? For which values of p is it a submartingale and for which is it a supermartingale?
b) Assume from now on that $a=1$ and $b=-1$. Pick two integers k, m such that $k<0<m$ and define

$$
T(\omega)=\inf \left\{n \in \mathbb{N}_{0}: M_{n}(\omega)=k \text { or } M_{n}(\omega)=m\right\}
$$

Define $M_{T}(\omega)=M_{T(\omega)}(\omega)$ (you may assume without proof that T is finite a.s.). For which values of p is $E\left[M_{T}\right]>0$ and for which values of p is $E\left[M_{T}\right]<0$? Explain your reasoning.

Problem 3 (40 points)

In this problem you may use that a finite sum of gaussian random variables is gaussian.
a) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be an independent sequence of gaussian random variables with mean zero and variance 1. Put $Y_{N}=X_{1}+X_{2}+\cdots+X_{N}$. Find the mean and variance of Y_{N}.
b) Explain that if $a>0$, then

$$
\int_{a}^{\infty} e^{-\frac{x^{2}}{2}} d x \leq \int_{a}^{\infty} \frac{x}{a} e^{-\frac{x^{2}}{2}} d x
$$

and use this to prove that

$$
\int_{a}^{\infty} e^{-\frac{x^{2}}{2}} d x \leq \frac{1}{a} e^{-\frac{a^{2}}{2}}
$$

c) Let $\epsilon>0$. Show that for all $N \in \mathbb{N}$,

$$
P\left[Y_{N}>\sqrt{N^{1+\epsilon}}\right] \leq \frac{e^{-\frac{N^{\epsilon}}{2}}}{\sqrt{2 \pi}}
$$

d) Prove that

$$
P\left[Y_{N}>\sqrt{N^{1+\epsilon}} \text { for infinitely many } N\right]=0
$$

You may use without proof that $\lim _{N \rightarrow \infty} \frac{N^{p}}{e^{\frac{N^{\epsilon}}{2}}}=0$ for all $p>0$.

