STK-MAT3710: Solution to Exam 2020

Problem 1 a) We have

$$
\phi_{Y}(t)=E\left[e^{i t Y}\right]=\sum_{n=0}^{\infty} e^{i t n} \frac{\lambda^{n}}{n!} e^{-\lambda}=e^{-\lambda} \sum_{n=0}^{\infty} \frac{\left(\lambda e^{i t}\right)^{n}}{n!}=e^{-\lambda} e^{\lambda e^{i t}}=e^{\lambda\left(e^{i t}-1\right)}
$$

where we have used the Taylor series for the exponential function.
b) Note first that since the series

$$
\sum_{n=0} n \frac{\lambda^{n}}{n!} e^{-\lambda}=\sum_{n=1} \frac{\lambda^{n}}{(n-1)!} e^{-\lambda}
$$

converges, Y is integrable, and hence ϕ_{Y} is differentiable with $\phi_{Y}^{\prime}(0)=i E(Y)$. Differentiating we get

$$
\phi_{Y}^{\prime}(t)=e^{\lambda\left(e^{i t}-1\right)} \lambda i e^{i t}=i \lambda e^{i t} e^{\lambda\left(e^{i t}-1\right)}
$$

which means that $\phi_{Y}^{\prime}(0)=i \lambda$. Thus

$$
E[Y]=\frac{\phi_{Y}^{\prime}(0)}{i}=\frac{i \lambda}{i}=\lambda
$$

c) We have

$$
\phi_{X}(t)=E\left[e^{i t X}\right]=e^{i t 0}\left(1-\frac{\lambda}{n}\right)+e^{i t 1} \frac{\lambda}{n}=1+\left(e^{i t}-1\right) \frac{\lambda}{n} .
$$

d) By independence, we have

$$
\begin{aligned}
\phi_{S_{n}}=E\left[e^{i t S_{n}}\right] & =E\left[e^{i t\left(X_{n}^{(1)}+\cdots+X_{n}^{(n)}\right)}\right]=E\left[e^{i t X_{n}^{(1)}}\right] \cdot \ldots \cdot E\left[e^{i t X_{n}^{(n)}}\right] \\
& =\phi_{X}(t)^{n}=\left(1+\left(e^{i t}-1\right) \frac{\lambda}{n}\right)^{n}
\end{aligned}
$$

e) By the definition of e (or a formula on the formula sheet),

$$
\lim _{n \rightarrow \infty} \phi_{S_{n}}(t)=\lim _{n \rightarrow \infty}\left(1+\left(e^{i t}-1\right) \frac{\lambda}{n}\right)^{n}=e^{\lambda\left(e^{i t}-1\right)}
$$

which is the characteristic function of Y, and hence S_{n} converges to Y in distribution by Lévy's Continuity Theorem.

Problem 2 a) M_{n} is obviously \mathcal{F}_{n}-measurable and integrable. Putting $\Delta M_{n}=$ $M_{n+1}-M_{n}=X_{n+1}$ and using that X_{n+1} is independent of \mathcal{F}_{n}, we have

$$
E\left[\Delta M_{n} \mid \mathcal{F}_{n}\right]=E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=E\left[X_{n+1}\right]=a p+b(1-p)=(a-b) p+b
$$

This quantity is 0 when $p=\frac{-b}{a-b}$ (which is between 0 and 1 since a is positive and b is negative), it is positive when $p \geq \frac{-b}{a-b}$, and it is negative when $p \leq \frac{-b}{a-b}$. Hence M is a martingale when $p=\frac{-b}{a-b}$, a submartingale when $p \geq \frac{-b}{a-b}$, and a
supermartingale when $p \leq \frac{-b}{a-b}$.
b) Observe first that with $a=1, b=-1$, the critical value in a) becomes $p=\frac{-b}{a-b}=\frac{1}{2}$. Note also that since T is a first hitting time, it is a stopping time. Let $Y_{n}=M_{n \wedge T}$. Then Y is bounded and $Y_{T}=M_{T}$. Moreover, Y is a martingale/submartingale/supermartingale iff M is one. Applying Theorem 9.11 (optional stopping for bounded processes) to the stopping times 1 and T, we get $E\left[Y_{T}\right]=E\left[Y_{1}\right]$ if Y is a martingale, $E\left[Y_{T}\right] \geq E\left[Y_{1}\right]$ if Y is a submartingale, and $E\left[Y_{T}\right] \leq E\left[Y_{1}\right]$ if Y is a supermartingale. As $E\left[Y_{1}\right]=E\left[M_{1}\right]$ is zero, greater than zero, or less than 0 according to whether $p=\frac{1}{2}, p>\frac{1}{2}$, or $p<\frac{1}{2}$, we see that $E\left[M_{T}\right]=E\left[M_{1}\right]=0$ if $p=\frac{1}{2}, E\left[M_{T}\right] \geq E\left[M_{1}\right]>0$ if $p>\frac{1}{2}$, and $E\left[M_{T}\right] \leq E\left[M_{1}\right]<0$ if $p<\frac{1}{2}$.

Problem 3 a) We have

$$
E\left[Y_{N}\right]=E\left[X_{1}+X_{2}+\cdots+X_{N}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{N}\right]=0
$$

As the X_{n} are independent,

$$
\operatorname{var}\left(Y_{n}\right)=\operatorname{var}\left(X_{1}+X_{2}+\cdots+X_{N}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+\cdots+\operatorname{var}\left(X_{N}\right)=N
$$

b) We have

$$
\int_{a}^{\infty} e^{-\frac{x^{2}}{2}} d x \leq \int_{a}^{\infty} \frac{x}{a} e^{-\frac{x^{2}}{2}} d x
$$

since $e^{-\frac{x^{2}}{2}} \leq \frac{x}{a} e^{-\frac{x^{2}}{2}}$ on the interval $[a, \infty)$ that we are integrating over. Hence using the substitution $u=\frac{x^{2}}{2}, d u=x d x$, we get

$$
\int_{a}^{\infty} e^{-\frac{x^{2}}{2}} d x \leq \int_{a}^{\infty} \frac{x}{a} e^{-\frac{x^{2}}{2}} d x=\int_{\frac{a^{2}}{2}}^{\infty} \frac{1}{a} e^{-u} d u=\left[-\frac{1}{a} e^{-u}\right]_{\frac{a^{2}}{2}}^{\infty}=\frac{1}{a} e^{-\frac{a^{2}}{2}}
$$

c) Since Y_{N} is gaussian with mean 0 and variance N, we have

$$
P\left[Y_{N}>\sqrt{N^{1+\epsilon}}\right]=\int_{\sqrt{N^{1+\epsilon}}}^{\infty} \frac{1}{\sqrt{2 \pi N}} e^{-\frac{u^{2}}{2 N}} d u
$$

Substituting $x=\frac{u}{\sqrt{N}}, d x=\frac{d u}{\sqrt{N}}$ and using the inequality above, we get

$$
P\left[Y_{N}>\sqrt{N^{1+\epsilon}}\right]=\int_{N^{\frac{\epsilon}{2}}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d u \leq \frac{e^{-\frac{N^{\epsilon}}{2}}}{\sqrt{2 \pi} N^{\frac{\epsilon}{2}}} \leq \frac{e^{-\frac{N^{\epsilon}}{2}}}{\sqrt{2 \pi}} .
$$

d) By the first half of Borel-Cantelli's lemma,

$$
P\left[Y_{N}>\sqrt{N^{1+\epsilon}} \text { for infinitely many } N\right]=0
$$

if

$$
\sum_{N=1}^{\infty} P\left[Y_{N}>\sqrt{N^{1+\epsilon}}\right]<\infty
$$

By c)

$$
\sum_{N=1}^{\infty} P\left[Y_{N}>\sqrt{N^{1+\epsilon}}\right] \leq \frac{1}{\sqrt{2 \pi}} \sum_{N=1}^{\infty} e^{-\frac{N^{\epsilon}}{2}}
$$

and hence it suffices to show that the series $\sum_{N=1}^{\infty} e^{-\frac{N^{\epsilon}}{2}}$ converges. Using the hint with $p=2$, we see that

$$
\lim _{N \rightarrow \infty} \frac{e^{-\frac{N^{\epsilon}}{2}}}{\frac{1}{N^{2}}}=\lim _{N \rightarrow \infty} \frac{N^{2}}{e^{\frac{N^{\epsilon}}{2}}}=0
$$

Since $\sum_{N=1}^{\infty} \frac{1}{N^{2}}$ converges, this means that $\sum_{N=1}^{\infty} e^{-\frac{N^{\epsilon}}{2}}$ converges by the Limit Comparison Test, and we are done.
(To see that the hint is correct, choose $m \in \mathbb{N}$ so large that $m \epsilon>p$ and note that by Taylor's Formula

$$
e^{\frac{N^{\epsilon}}{2}}>\sum_{k=0}^{m} \frac{\left(\frac{N^{\epsilon}}{2}\right)^{k}}{k!}>\frac{N^{m \epsilon}}{2^{m} m!} .
$$

Hence

$$
\lim _{N \rightarrow \infty} \frac{N^{p}}{e^{\frac{N^{\epsilon}}{2}}} \leq \lim _{N \rightarrow \infty} \frac{N^{p}}{\frac{N^{m e}}{2^{m} m!}}=0
$$

as $m \epsilon>p$.)

