STK-MAT3710/4710 Fall 2020: Solution to the mandatory assignmeent.

Problem 1. Let $B_{N}=\bigcap_{n=1}^{N} A_{n}$. Then $\left\{B_{N}\right\}$ is a decreasing sequence with $\bigcap_{n=1}^{\infty} B_{n}=\bigcap_{n=1}^{\infty} A_{n}$. By continuity of measure,

$$
P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{N \rightarrow \infty} P\left(B_{N}\right)=\lim _{N \rightarrow \infty} P\left(\bigcap_{n=1}^{N} A_{n}\right)
$$

By independence, $P\left(\bigcap_{n=1}^{N} A_{n}\right)=\prod_{n=1}^{N} P\left(A_{n}\right)$, and hence

$$
P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{N \rightarrow \infty} P\left(\bigcap_{n=1}^{N} A_{n}\right)=\lim _{N \rightarrow \infty} \prod_{n=1}^{N} P\left(A_{n}\right)=\prod_{n=1}^{\infty} P\left(A_{n}\right)
$$

Problem 2. a) Let $R=A \times B, S=B \times D$. Then $R \cap S=(A \cap C) \times(B \cap D)$, which is a measurable rectangle since \mathcal{A} and \mathcal{B} are closed under finite intersections.
b) Let $R=A \times B$. Then $(A \times B)^{c}=\left(A^{c} \times Y\right) \cup\left(A \times B^{c}\right)$, which is a disjoint union of two measurable rectangles.
c) Assume that $R=R_{1} \cup R_{2} \cup \ldots \cup R_{n}$ and $S=S_{1} \cup S_{2} \cup \ldots \cup S_{m}$ where the unions consist of disjoint measurable rectangles. Then

$$
R \cap S=\bigcup_{i, j}\left(R_{i} \cap S_{j}\right)
$$

where the elements of the union are disjoint, measurable rectangles.
d) We use induction on n : Assume that $S_{1}, S_{2}, \ldots, S_{n}$ are elements of \mathcal{R}. If $n=1$ or $n=2$, we know that the intersection $S_{1} \cap S_{2} \cap \ldots \cap S_{n}$ is in \mathcal{R}. To check the induction step, note that if the assumption holds for $n=k$, it also holds for $n=k+1$ as

$$
S_{1} \cap S_{2} \cap \ldots \cap S_{k} \cap S_{k+1}=\left(S_{1} \cap S_{2} \cap \ldots \cap S_{k}\right) \cap S_{k+1}
$$

Here the first set is in \mathcal{R} by the induction hypothesis and the second by assumption, and hence the intersection is in \mathcal{R} by c). The assertion now follows by induction.
e) Assume that $R=R_{1} \cup R_{2} \cup \ldots \cup R_{n}$ where the union consists of disjoint measurable rectangles. By one of De Morgan's laws,

$$
R^{c}=R_{1}^{c} \cap R_{2}^{c} \cap \ldots R_{n}^{c}
$$

By b), each R_{i}^{c} is the disjoint union of two measurable rectangles and hence in \mathcal{R}, and as we have just proved that \mathcal{R} is closed under finite intersections, $R^{c} \in \mathcal{R}$.
f) As any algebra containing all measurable rectangles has to include all finite unions of measurable rectangles, it suffices to show that \mathcal{R} is an algebra. There are three conditions to check:
(i) $\emptyset \in \mathcal{R}$
(ii) If $R \in \mathcal{R}$, then $R^{c} \in \mathcal{R}$.
(iii) If $R, S \in \mathcal{R}$, the $R \cup S \in \mathcal{R}$

To prove (i), just note that $\emptyset=\emptyset \times \emptyset \in \mathcal{R}$. As (ii) is identical to d), we only need to prove (iii). This is just a little exercise in De Morgan: As $R \cup S=\left(R^{c} \cap S^{c}\right)^{c}$, we see that $R \cup S \in \mathcal{R}$ by combining c) and d).
g) To prove the assertion about complements, just note that

$$
y \in\left(E^{x}\right)^{c} \Longleftrightarrow y \notin E^{x} \Longleftrightarrow(x, y) \notin E \Longleftrightarrow(x, y) \in E^{c} \Longleftrightarrow y \in\left(E^{c}\right)^{x}
$$

The proof for unions is similar:

$$
\begin{aligned}
& y \in\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{x} \Longleftrightarrow(x, y) \in \bigcup_{n=1}^{\infty} E_{n} \Longleftrightarrow(x, y) \in E_{n} \text { for at least one } n \\
& \Longleftrightarrow y \in\left(E_{n}\right)^{x} \text { for at least one } n \Longleftrightarrow y \in \bigcup_{n=1}^{\infty}\left(E_{n}\right)^{x}
\end{aligned}
$$

h) Let \mathcal{D} be the collection of all sets in \mathcal{E} such that $E^{x} \in \mathcal{B}$. It suffices to prove that \mathcal{D} is a σ-algebra containing all measurable rectangles (since \mathcal{E} is the smallest such σ-algebra). We first observe that if $R=A \times B$ is a measurable rectangle, then $R \in \mathcal{D}$ as R^{x} is either B or \emptyset according to whether x is in A or not. As \emptyset is a measurable rectangle, this also proves that $\emptyset \in \mathcal{D}$. To see that \mathcal{D} is closed under complements, just recall that by f), $\left(E^{c}\right)^{x}=\left(E^{x}\right)^{c}$. Hence

$$
E \in \mathcal{D} \Longleftrightarrow E^{x} \in \mathcal{B} \Longleftrightarrow\left(E^{x}\right)^{c} \in \mathcal{B} \Longleftrightarrow\left(E^{c}\right)^{x} \in \mathcal{B} \Longleftrightarrow E^{c} \in \mathcal{D}
$$

The proof that \mathcal{D} is closed under countable unions is similar: If $E_{n} \in \mathcal{D}$ for all n, then $\left(E_{n}\right)^{x} \in \mathcal{B}$ for all n, and hence $\bigcup_{n=1}^{\infty}\left(E_{n}\right)^{x} \in \mathcal{B}$. By f), $\bigcup_{n=1}^{\infty}\left(E_{n}\right)^{x}=$ $\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{x}$, and thus $\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{x} \in \mathcal{B}$, which means that $\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{D}$.
i) We must show that \mathcal{M} is closed under increasing and decreasing countable unions. Assume first that $\left\{E_{n}\right\}$ is an increasing sequence of sets in \mathcal{M} and let $E=\bigcup_{n=1}^{\infty} E_{n}$. We must show that $E \in \mathcal{M}$. Since $E_{n} \in \mathcal{M}$ for all n, the functions $x \mapsto Q\left(\left(E_{n}\right)^{x}\right)$ are \mathcal{A}-measurable for all n, and by f) and continuity of measure, $Q\left(E^{x}\right)=Q\left(\bigcup_{n=1}^{\infty}\left(E_{n}\right)^{x}\right)=\lim _{n \rightarrow \infty} Q\left(\left(E_{n}\right)^{x}\right)$. Thus $x \mapsto Q\left(E^{x}\right)$ is the pointwise limit of the \mathcal{A}-measurable functions $x \mapsto Q\left(\left(E_{n}\right)^{x}\right)$ and must be \mathcal{A}-measurable. Note also that since the sequence $x \mapsto Q\left(\left(E_{n}\right)^{x}\right)$ increases to $x \mapsto Q\left(E^{x}\right)$, the Monotone Convergence Theorem tells us that

$$
\int Q\left(E^{x}\right) d P(x)=\lim _{n \rightarrow \infty} \int Q\left(\left(E_{n}\right)^{x}\right) d P(x)
$$

Since $E_{n} \in \mathcal{M}$, we have $\int Q\left(\left(E_{n}\right)^{x}\right) d P(x)=(P \times Q)\left(E_{n}\right)$, so

$$
\int Q\left(E^{x}\right) d P(x)=\lim _{n \rightarrow \infty}(P \times Q)\left(E_{n}\right)=(P \times Q)(E)
$$

by continuity of measure.
The proof for decreasing sequences is almost the same, but first we need to check that $\bigcap_{n \in \mathbb{N}}\left(E_{n}\right)^{x}=\left(\bigcap_{n \in \mathbb{N}} E_{n}\right)^{x}$. This is done just as for unions:

$$
y \in\left(\bigcap_{n=1}^{\infty} E_{n}\right)^{x} \Longleftrightarrow(x, y) \in \bigcap_{n=1}^{\infty} E_{n} \Longleftrightarrow(x, y) \in E_{n} \text { for all } n
$$

$$
\Longleftrightarrow y \in\left(E_{n}\right)^{x} \text { for all } n \Longleftrightarrow y \in \bigcap_{n=1}^{\infty}\left(E_{n}\right)^{x}
$$

Assume now that $\left\{E_{n}\right\}$ is an decreasing sequence of sets in \mathcal{M} and let $E=$ $\bigcap_{n=1}^{\infty} E_{n}$. We must show that $E \in \mathcal{M}$. Since $E_{n} \in \mathcal{M}$ for all n, the functions $x \mapsto$ $Q\left(\left(E_{n}\right)^{x}\right)$ are \mathcal{A}-measurable for all n, and by what we just proved and continuity of measure, $Q\left(E^{x}\right)=Q\left(\bigcap_{n=1}^{\infty}\left(E_{n}\right)^{x}\right)=\lim _{n \rightarrow \infty} Q\left(\left(E_{n}\right)^{x}\right)$. Thus $x \mapsto Q\left(E^{x}\right)$ is the pointwise limit of the \mathcal{A}-measurable functions $x \mapsto Q\left(\left(E_{n}\right)^{x}\right)$ and must be \mathcal{A}-measurable. Note also that since the sequence $x \mapsto Q\left(\left(E_{n}\right)^{x}\right)$ converges to $x \mapsto Q\left(E^{x}\right)$, the Dominated Convergence Theorem (with the constant function $g=1$ as the dominating function) tells us that

$$
\int Q\left(E^{x}\right) d P(x)=\lim _{n \rightarrow \infty} \int Q\left(\left(E_{n}\right)^{x}\right) d P(x)
$$

Since $E_{n} \in \mathcal{M}$, we have $\int Q\left(\left(E_{n}\right)^{x}\right) d P(x)=(P \times Q)\left(E_{n}\right)$, so

$$
\int Q\left(E^{x}\right) d P(x)=\lim _{n \rightarrow \infty}(P \times Q)\left(E_{n}\right)=(P \times Q)(E)
$$

by continuity of measure.
j) We are going to use the Monotone Class Theorem. If we can show that $\mathcal{R} \subseteq \mathcal{M}$, then \mathcal{M} clearly contains the monotone class generated by \mathcal{R}. Since \mathcal{R} is an algebra, the monotone class generated by \mathcal{R} equals the σ-algebra \mathcal{E} generated by \mathcal{R}, and hence $\mathcal{E} \subseteq M$. This means that

$$
(P \times Q)(E)=\int Q\left(E^{x}\right) d P(x)
$$

for all $E \in \mathcal{E}$ as we were supposed to show.
It only remains to show that $\mathcal{R} \subseteq \mathcal{M}$: If $R \in \mathcal{R}$, we have $R=\bigcup_{i=1}^{n}\left(R_{i} \times S_{i}\right)$ for disjoint, measurable rectangles $R_{i} \times S_{i}$. Note that

$$
\mathbf{1}_{R}=\sum_{i=1}^{n} \mathbf{1}_{R_{i} \times S_{i}}
$$

and hence

$$
Q\left(R^{x}\right)=\int \mathbf{1}_{R^{x}} d Q(x)=\sum_{i=1}^{n} \int \mathbf{1}_{\left(R_{i} \times S_{i}\right)^{x}} d Q(x)=\sum_{i=1}^{n} \mathbf{1}_{R_{i}}(x) Q\left(S_{i}\right)
$$

which shows that $x \mapsto Q\left(R^{x}\right)$ is \mathcal{A}-meassurable as it is a linear combination of \mathcal{A}-measurable simple functions. Moreover,

$$
\begin{gathered}
\int Q\left(R^{x}\right) d P(x)=\int \sum_{i=1}^{n} \mathbf{1}_{R_{i}}(x) Q\left(S_{i}\right) d P(x)=\sum_{i=1}^{n} Q\left(S_{i}\right) \int \sum_{i=1}^{n} \mathbf{1}_{R_{i}}(x) d P(x) \\
=\sum_{i=1}^{n} Q\left(S_{i}\right) P\left(R_{i}\right)=\sum_{i=1}^{n}(P \times Q)\left(R_{i} \times S_{i}\right)=(P \times Q)(R)
\end{gathered}
$$

This shows that $R \in \mathcal{M}$.
k) First observe that we can write the result in i) as

$$
E_{P \times Q}\left(\mathbf{1}_{E}\right)=E_{P}\left(\int \mathbf{1}_{E}(x, y) d Q(y)\right)
$$

which shows that the result holds for indicator functions.
Let \underline{U}_{n} be the n-th lower approximation to U. We have

$$
\begin{gathered}
E_{P \times Q}\left(\underline{U}_{n}\right)=\sum_{k=0}^{\infty} \frac{k}{2^{n}}(P \times Q)\left\{\frac{k}{2^{n}}<U \leq \frac{k+1}{2^{n}}\right\} \\
=\sum_{k=0}^{\infty} \frac{k}{2^{n}} E_{P \times Q}\left(\mathbf{1}_{\left\{\frac{k}{2^{n}}<U \leq \frac{k+1}{2^{n}}\right\}}\right)=\sum_{k=0}^{\infty} \frac{k}{2^{n}} E_{P}\left(\int \mathbf{1}_{\left\{\frac{k}{2^{n}}<U \leq \frac{k+1}{2^{n}}\right\}}(x, y) d Q(y)\right) \\
=E_{P}\left(\int \sum_{k=0}^{\infty} \frac{k}{2^{n}} \mathbf{1}_{\left\{\frac{k}{2^{n}}<U \leq \frac{k+1}{2^{n}}\right\}}(x, y) d Q(y)\right)=E_{P}\left(\int \underline{U}_{n}(x, y) d Q(y)\right)
\end{gathered}
$$

If we let $n \rightarrow \infty$, we see that $E_{P \times Q}\left(\underline{U}_{n}\right) \rightarrow E_{P \times Q}(U)$ by definition. As the sequence $\left\{\underline{U}_{n}\right\}$ is increasing pointwise to U, the sequence $\left\{\int \underline{U}_{n}(x, y) d Q(y)\right\}$ increases to $\int U(x, y) d Q(y)$ by the Monotone Convergence Theorem. Applying the Monotone Convergence Theorem again, this time to the sequence $\left\{\int \underline{U}_{n}(x, y) d Q(y)\right\}$, we get that

$$
\lim _{n \rightarrow \infty} E_{P}\left(\int \underline{U}_{n}(x, y) d Q(y)\right)=E_{P}\left(\int U(x, y) d Q(y)\right)
$$

Combining the two limits, we get

$$
E_{P \times Q}(U)=E_{P}\left(\int U(x, y) d Q(y)\right)
$$

as we were asked to show. (This result is usually called Tonelli's Theorem. If we add some integrability conditions, we can remove the assumption that U is nonnegative, and then we get Fubini's Theorem.)

