
STK-MAT3710/4710 Fall 2020: Solution to the
mandatory assignmeent.

Problem 1. Let BN =
⋂N

n=1An. Then {BN} is a decreasing sequence with⋂∞
n=1Bn =

⋂∞
n=1An. By continuity of measure,

P

( ∞⋂
n=1

An

)
= lim

N→∞
P (BN ) = lim

N→∞
P

(
N⋂

n=1

An

)

By independence, P (
⋂N

n=1An) =
∏N

n=1 P (An), and hence

P

( ∞⋂
n=1

An

)
= lim

N→∞
P

(
N⋂

n=1

An

)
= lim

N→∞

N∏
n=1

P (An) =

∞∏
n=1

P (An).

Problem 2. a) Let R = A×B, S = B×D. Then R∩S = (A∩C)×(B∩D), which
is a measurable rectangle since A and B are closed under finite intersections.

b) Let R = A×B. Then (A×B)c = (Ac×Y )∪ (A×Bc), which is a disjoint
union of two measurable rectangles.

c) Assume that R = R1 ∪ R2 ∪ . . . ∪ Rn and S = S1 ∪ S2 ∪ . . . ∪ Sm where
the unions consist of disjoint measurable rectangles. Then

R ∩ S =
⋃
i,j

(Ri ∩ Sj)

where the elements of the union are disjoint, measurable rectangles.
d) We use induction on n: Assume that S1, S2, . . . , Sn are elements of R. If

n = 1 or n = 2, we know that the intersection S1 ∩ S2 ∩ . . . ∩ Sn is in R. To
check the induction step, note that if the assumption holds for n = k, it also
holds for n = k + 1 as

S1 ∩ S2 ∩ . . . ∩ Sk ∩ Sk+1 = (S1 ∩ S2 ∩ . . . ∩ Sk) ∩ Sk+1.

Here the first set is in R by the induction hypothesis and the second by as-
sumption, and hence the intersection is in R by c). The assertion now follows
by induction.

e) Assume that R = R1 ∪R2 ∪ . . . ∪Rn where the union consists of disjoint
measurable rectangles. By one of De Morgan’s laws,

Rc = Rc
1 ∩Rc

2 ∩ . . . Rc
n.

By b), each Rc
i is the disjoint union of two measurable rectangles and hence

in R, and as we have just proved that R is closed under finite intersections,
Rc ∈ R.

f) As any algebra containing all measurable rectangles has to include all
finite unions of measurable rectangles, it suffices to show that R is an algebra.
There are three conditions to check:

(i) ∅ ∈ R
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(ii) If R ∈ R, then Rc ∈ R.

(iii) If R,S ∈ R, the R ∪ S ∈ R

To prove (i), just note that ∅ = ∅×∅ ∈ R. As (ii) is identical to d), we only need
to prove (iii). This is just a little exercise in De Morgan: As R∪S = (Rc ∩Sc)c,
we see that R ∪ S ∈ R by combining c) and d).

g) To prove the assertion about complements, just note that

y ∈ (Ex)c ⇐⇒ y /∈ Ex ⇐⇒ (x, y) /∈ E ⇐⇒ (x, y) ∈ Ec ⇐⇒ y ∈ (Ec)x

The proof for unions is similar:

y ∈

( ∞⋃
n=1

En

)x

⇐⇒ (x, y) ∈
∞⋃

n=1

En ⇐⇒ (x, y) ∈ En for at least one n

⇐⇒ y ∈ (En)x for at least one n⇐⇒ y ∈
∞⋃

n=1

(En)x

h) Let D be the collection of all sets in E such that Ex ∈ B. It suffices to
prove that D is a σ-algebra containing all measurable rectangles (since E is the
smallest such σ-algebra). We first observe that if R = A × B is a measurable
rectangle, then R ∈ D as Rx is either B or ∅ according to whether x is in A or
not. As ∅ is a measurable rectangle, this also proves that ∅ ∈ D. To see that D
is closed under complements, just recall that by f), (Ec)x = (Ex)c. Hence

E ∈ D ⇐⇒ Ex ∈ B ⇐⇒ (Ex)c ∈ B ⇐⇒ (Ec)x ∈ B ⇐⇒ Ec ∈ D

The proof that D is closed under countable unions is similar: If En ∈ D for all
n, then (En)x ∈ B for all n, and hence

⋃∞
n=1(En)x ∈ B. By f),

⋃∞
n=1(En)x =

(
⋃∞

n=1En)
x
, and thus (

⋃∞
n=1En)

x ∈ B, which means that
⋃∞

n=1En ∈ D.
i) We must show thatM is closed under increasing and decreasing countable

unions. Assume first that {En} is an increasing sequence of sets in M and let
E =

⋃∞
n=1En. We must show that E ∈ M. Since En ∈ M for all n, the

functions x 7→ Q((En)x) are A-measurable for all n, and by f) and continuity
of measure, Q(Ex) = Q(

⋃∞
n=1(En)x) = limn→∞Q((En)x). Thus x 7→ Q(Ex)

is the pointwise limit of the A-measurable functions x 7→ Q((En)x) and must
be A-measurable. Note also that since the sequence x 7→ Q((En)x) increases to
x 7→ Q(Ex), the Monotone Convergence Theorem tells us that∫

Q(Ex) dP (x) = lim
n→∞

∫
Q((En)x) dP (x)

Since En ∈M, we have
∫
Q((En)x) dP (x) = (P ×Q)(En), so∫

Q(Ex) dP (x) = lim
n→∞

(P ×Q)(En) = (P ×Q)(E)

by continuity of measure.
The proof for decreasing sequences is almost the same, but first we need to

check that
⋂

n∈N(En)x =
(⋂

n∈NEn

)x
. This is done just as for unions:

y ∈

( ∞⋂
n=1

En

)x

⇐⇒ (x, y) ∈
∞⋂

n=1

En ⇐⇒ (x, y) ∈ En for all n
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⇐⇒ y ∈ (En)x for all n⇐⇒ y ∈
∞⋂

n=1

(En)x

Assume now that {En} is an decreasing sequence of sets in M and let E =⋂∞
n=1En. We must show that E ∈M. Since En ∈M for all n, the functions x 7→

Q((En)x) are A-measurable for all n, and by what we just proved and continuity
of measure, Q(Ex) = Q(

⋂∞
n=1(En)x) = limn→∞Q((En)x). Thus x 7→ Q(Ex) is

the pointwise limit of the A-measurable functions x 7→ Q((En)x) and must be
A-measurable. Note also that since the sequence x 7→ Q((En)x) converges to
x 7→ Q(Ex), the Dominated Convergence Theorem (with the constant function
g = 1 as the dominating function) tells us that∫

Q(Ex) dP (x) = lim
n→∞

∫
Q((En)x) dP (x)

Since En ∈M, we have
∫
Q((En)x) dP (x) = (P ×Q)(En), so∫

Q(Ex) dP (x) = lim
n→∞

(P ×Q)(En) = (P ×Q)(E)

by continuity of measure.
j) We are going to use the Monotone Class Theorem. If we can show that

R ⊆ M, then M clearly contains the monotone class generated by R. Since
R is an algebra, the monotone class generated by R equals the σ-algebra E
generated by R, and hence E ⊆M . This means that

(P ×Q)(E) =

∫
Q(Ex) dP (x)

for all E ∈ E as we were supposed to show.
It only remains to show that R ⊆M: If R ∈ R, we have R =

⋃n
i=1(Ri×Si)

for disjoint, measurable rectangles Ri × Si. Note that

1R =

n∑
i=1

1Ri×Si

and hence

Q(Rx) =

∫
1Rx dQ(x) =

n∑
i=1

∫
1(Ri×Si)x dQ(x) =

n∑
i=1

1Ri
(x)Q(Si)

which shows that x 7→ Q(Rx) is A-meassurable as it is a linear combination of
A-measurable simple functions. Moreover,∫

Q(Rx) dP (x) =

∫ n∑
i=1

1Ri
(x)Q(Si) dP (x) =

n∑
i=1

Q(Si)

∫ n∑
i=1

1Ri
(x) dP (x)

=

n∑
i=1

Q(Si)P (Ri) =

n∑
i=1

(P ×Q)(Ri × Si) = (P ×Q)(R).

This shows that R ∈M.
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k) First observe that we can write the result in i) as

EP×Q(1E) = EP

(∫
1E(x, y) dQ(y)

)
which shows that the result holds for indicator functions.

Let Un be the n-th lower approximation to U . We have

EP×Q(Un) =

∞∑
k=0

k

2n
(P ×Q)

{
k

2n
< U ≤ k + 1

2n

}

=

∞∑
k=0

k

2n
EP×Q

(
1{ k

2n <U≤ k+1
2n }

)
=

∞∑
k=0

k

2n
EP

(∫
1{ k

2n <U≤ k+1
2n }

(x, y) dQ(y)

)

= EP

(∫ ∞∑
k=0

k

2n
1{ k

2n <U≤ k+1
2n }

(x, y) dQ(y)

)
= EP

(∫
Un(x, y) dQ(y)

)
If we let n → ∞, we see that EP×Q(Un) → EP×Q(U) by definition. As the
sequence {Un} is increasing pointwise to U , the sequence {

∫
Un(x, y) dQ(y)} in-

creases to
∫
U(x, y) dQ(y) by the Monotone Convergence Theorem. Applying the

Monotone Convergence Theorem again, this time to the sequence {
∫
Un(x, y) dQ(y)},

we get that

lim
n→∞

EP

(∫
Un(x, y) dQ(y)

)
= EP

(∫
U(x, y) dQ(y)

)
Combining the two limits, we get

EP×Q(U) = EP

(∫
U(x, y) dQ(y)

)
as we were asked to show. (This result is usually called Tonelli’s Theorem. If
we add some integrability conditions, we can remove the assumption that U is
nonnegative, and then we get Fubini’s Theorem.)
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