
STK-MAT3710: Filtrations, stopping times, and
intuition

The notions of filtrations and stopping times can be hard to grasp at first. In
this note I’ll try to make the intuition clearer by first looking at a particular
filtration where things fit together nicely.

The setting is as follows: (Ω,F , P ) is a probability space, and {Xn}n∈N is
a stochastic process on (Ω,F , P ). As usual, we shall think of n as time. We
want to capture the information we get from observing the process up to time
n. If ω and ω′ are two elements in Ω such that Xi(ω) = Xi(ω

′) for all i ≤ n,
we clearly cannot distinguish ω from ω′ based on our observations up to time
n. Hence if we want to make a decision at time n based on our observations so
far, that decision has to be the same in case ω as in case ω′. Let us make this
a bit more formal.

Definition 1 We say that ω, ω′ ∈ Ω are indistinguishable at time n, and write
ω ∼n ω

′, if Xi(ω) = Xi(ω
′) for all i ≤ n. We shall also write

[ω]n = {ω′ ∈ Ω : ω′ ∼n ω}

for the set of all ω′ that are indistinguishable from ω at time n.

Take an event A ∈ F . What should it mean that A is observable at time n?
Well, it ought to mean that we can decide whether an ω ∈ Ω belongs to A by
looking at our observations X1(ω), X2(ω), . . . , Xn(ω), i.e.:

Definition 2 An event A ∈ F is observable at time n if whenever ω ∈ A, then
[ω]n ⊆ A (hence if ω is in A, all ω′ which are indistinguishable from ω at time
n are also in A).

Here comes the first connection to σ-algebras:

Proposition 3 The events that are observable at time n form a σ-algebra that
we shall denote by An.

Proof: We have to check the three conditions for σ-algebras:

(i) As ∅ doesn’t have any element, it clearly satisfies the criterion for being
in An.

(ii) Assume A ∈ An; we must prove that Ac ∈ An. Assume not; then there
must be a ω ∈ Ac such that [ω]n * Ac. Hence there is an ω′ ∈ [ω]n such
that ω′ ∈ A. Since A ∈ An, this means that [ω′] ⊆ A. But ω ∈ [ω′]n, and
hence we have our contradiction as ω cannot both be in Ac and A.

(iii) Assume that Ak ∈ An for all k ∈ N; we must show that
⋃

k∈NAk ∈ An:
If ω ∈

⋃
k∈NAk, then ω ∈ Ak for some k ∈ N, and since Ak ∈ An, this

means that [ω]n ⊆ Ak. But then [ω]n ⊆
⋃

k∈NAk, which is what we had
to prove. �

I leave to you to check that everything is in order with respect to measura-
bility:

1



Proposition 4 {An} is an increasing sequence of σ-algebras and Xn is An-
measurable for all n.

Let us take next a look at stopping times. The idea is that a stopping time
is a decision we can make based on the information we have available at the
time. Hence if T (ω) = n and ω′ ∼n ω, we should also have T (ω′) = n as we
at time n cannot distinguish between ω and ω′. Let us turn this into a formal
definition:

Definition 5 A random variable T : Ω → N ∪ {∞} is a stopping time (with
respect to {An}) if whenever T (ω) = n and ω′ ∼n ω, then T (ω′) = n.

The problem with this definition is that although it makes perfect sense for the
filtration An, it is hard to generalize to other filtrations. For that reason we
want to reformulate it in a way that is easier to generalize.

Proposition 6 A random variable T : Ω→ N ∪ {∞} is a stopping time if and
only if {ω : T (ω) ≤ n} ∈ An for all n.

Proof: Assume first that T is a stopping time according to the definition above.
For all k ≤ n, let Ak = {ω : T (ω) = k}. As T is a random variable, Ak is
an event, and by the definition of stopping times, we see that if ω ∈ Ak, then
[ω]k ∈ Ak. This proves that Ak ∈ Ak. As Ak ⊆ An and

{ω : T (ω) ≤ n} =
⋃
k≤n

Ak ,

we see that {ω : T (ω) ≤ n} ∈ An.
For the converse, assume that An = {ω : T (ω) ≤ n} ∈ An for all n. Since

{ω : T (ω) = n} = An \An−1

we see that {ω : T (ω) = n} ∈ An. This means that if T (ω) = n, then T (ω′) = n
for all ω′ ∈ [ω]n, and hence T is a stopping time. �

The next thing we want to look at, is the σ-algebra AT generated by a
stopping time T . The intuitive idea is that it consists of sets that are observable
at the time T in the following sense.

Definition 7 Assume that T is an {An}-stopping time. An event A is observ-
able at T if whenever T (ω) = n and ω ∈ A, then [ω]n ⊆ A. We let AT denote
the collection of all sets observable at T .

Just as for non-random times, we have:

Proposition 8 AT is a σ-algebra.

Proof: The proof is a slightly more complicated version of the proof of Propo-
sition 3. We again check the three conditions for a σ-algebra.

(i) As ∅ doesn’t have any element, it clearly satisfies the criterion for being
in AT .
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(ii) Assume A ∈ AT ; we must prove that Ac ∈ AT . Let ω ∈ Ac and put
n = T (ω). We must show that [ω]n ⊆ Ac. Assume not; then there is an
ω′ ∈ [ω]n such that ω′ ∈ A. Since T is a stopping time and ω′ ∼n ω,
we have T (ω′) = T (ω) = n. But since ω′ ∈ A ∈ AT , this means that
[ω′]n ⊆ A, which is impossible as ω ∈ [ω′]n and ω ∈ Ac.

(iii) Assume that Ak ∈ AT for all k ∈ N; we must show that
⋃

k∈NAk ∈ AT :
Let ω ∈

⋃
k∈NAk and put n = T (ω). Clearly, ω ∈ Ak for some k ∈ N, and

since Ak ∈ AT , this means that [ω]n ⊆ Ak. But then [ω]n ⊆
⋃

k∈NAk,
which is what we had to prove. �

We now want to find a description of AT that is easier to generalize to other
filtrations.

Proposition 9 Assume that T is an {An}-stopping time. Then A ∈ AT if and
only if A ∩ {ω : T (ω) ≤ n} ∈ An for all n.

Proof: Assume that A ∈ AT . Given an ω ∈ A∩{ω : T (ω) ≤ n}, we must show
that [ω]n ⊆ A ∩ {ω : T (ω) ≤ n}. Assume ω′ ∈ [ω]n. We clearly have T (ω) = k
for some k ≤ n, and since ω′ ∈ [ω]n ⊆ [ω]k, we see that T (ω′) = k. Hence
ω′ ∈ {ω : T (ω) ≤ n}. Moreover, since ω′ ∈ [ω]k and T (ω) = k, the assumption
that ω ∈ A, implies that ω′ ∈ A (here we are using that A ∈ AT ). But then
ω′ ∈ A ∩ {ω : T (ω) ≤ n} ∈ An, as we had to prove.

Assume for the converse that A ∩ {ω : T (ω) ≤ n} ∈ An for all n. We must
prove that A ∈ AT ; i.e. we have to show that if ω ∈ A and T (ω) = n, then
[ω]n ⊆ A. But since ω ∈ A ∩ {ω : T (ω) ≤ n} ∈ An, we have [ω]n ⊆ A ∩ {ω :
T (ω) ≤ n}, and in particular [ω]n ⊆ A. �

Concluding remarks: What have we done in this note? We have introduced a
natural filtration {An} and defined stopping times and σ-algebras generated by
stopping times in ways that make intuitive sense (definitions 2 and 7). Unfortu-
nately, these intuitive definitions do not make sense for more general filtrations,
but we have proved that they are equivalent to descriptions (propositions 6 and
9) which can easily be extended to the general case. Hence for general filtrations
we define stopping times and the σ-algebras they generate by the descriptions
in these propositions (just as the textbook does):

Definition 10 Assume {Fn} is a filtration (i.e. an increasing sequence of σ-
algebras such that Fn ⊆ F for all n). A random variable T : Ω→ N∪ {∞} is a
stopping time with respect to {Fn} if and only if {ω : T (ω) ≤ n} ∈ Fn for all
n.

Similarly for the σ-algebra generated by a stopping time:

Definition 11 Assume {Fn} is a filtration and T is a stopping time with respect
to {Fn}. The σ-algebra FT generated by T consists of all event A such that
A ∩ {ω : T (ω) ≤ n} ∈ Fn for all n.

It is not at all obvious that the intuition we have from the {An}-case carries
over to the general case, but experience proves that it does — and it even carries
over to the still more complicated case where the timeline is continuous and not
discrete.
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