STK-MAT3710/4710 Probability Theory Mandatory assignment 1 of 1

November 15, 2021

201 Solutions

[Problem 1] i) $\emptyset \in \mathcal{A}$. Indeed, $\mathbb{1}_{\emptyset}=0 \in \mathcal{G} .(f(x)=0$, constant function.)
ii) For any $A \in \mathcal{A}, A^{c} \in \mathcal{A}$. Indeed, $\mathbb{1}_{A^{c}}=1-\mathbb{1}_{A} \in \mathcal{G}$. $(\mathcal{G}$ is closed under $f-g$.) 4
iii) For any $A, B \in \mathcal{A}, \quad \mathbb{1}_{A \cap B}=\mathbb{1}_{A} \cdot \mathbb{1}_{B} \in \mathcal{G}$. Hence, \mathcal{A} is closed under finite intersection. 4 \mathcal{A} is an algebra. Then, let us show that it is also a monotone class.
iv) For any increasing sequence of sets $A_{1}, A_{1}, \cdots \in \mathcal{A}$, then, $\lim _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} A_{n}=A$ exists. Hence,

$$
\mathbb{1}_{\cup_{n=1}^{\infty} A_{n}}=\lim _{n \rightarrow \infty} \mathbb{1}_{A_{n}}=\mathbb{1}_{A} \in \mathcal{G}, \quad 3
$$

since \mathcal{G} is closed under pointwise convergence.
v) For any decreasing set sequence $A_{1}, A_{1}, \cdots \in \mathcal{A}$, then, $\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n}=A$ exists. Hence,

$$
\mathbb{1}_{\cap_{n=1}^{\infty} A_{n}}=\lim _{n \rightarrow \infty} \mathbb{1}_{A_{n}}=\mathbb{1}_{A} \in \mathcal{G}, \quad \mathfrak{Z}
$$

since \mathcal{G} is closed under pointwise convergence.
Since \mathcal{A} is an algebra and monotone class, then it is a sigma algebra. 2
[Problem 2] Suppose that $d_{1}(F, G)=0$, then
$F(x) \leq \lim _{\epsilon \downarrow 0}(G(x+\epsilon)+\epsilon)=G(x) \quad(G$ is a distribution function, hence it is right continuous $)$,
and

$$
F(y) \geq \lim _{\epsilon \downarrow 0}(G(y-\epsilon)-\epsilon)=G(y-) \quad(G \text { is a distribution function, then it has left limits }) .
$$

$2 \quad G(y-) \geq G(x)$ if $\mathrm{y}>\mathrm{x}$ (G is a distribution function, so increasing) and F is a distribution function so right-continuous, then taking the limit $y \downarrow x$, we get

2

$$
F(x) \geq \lim _{y \downarrow x} G(-y) \geq G(x),
$$

implies that $F(x)=G(x)$ for all x. 2
[Problem 3] Suppose $d_{2}\left(X_{n}, X\right) \xrightarrow{\text { pointwise }} 0$. Then, fix $a \in \mathbb{R}$, and let \underline{u} be the indicator function of the interval $(-\infty, a]$. Then,

$$
\begin{gathered}
0 \leq\left|F_{n}(a)-F_{X}(a)\right|=\left|P\left(X_{n} \leq a\right)-P(X \leq a)\right| \leq \sup _{u:\|u\|_{\infty}=1}\left|E\left(u\left(X_{n}\right)\right)-E(u(X))\right| \xrightarrow{\text { pointwise }} 0 . \\
5
\end{gathered}
$$

$$
\begin{equation*}
2 \quad \sum_{n \in \mathbb{N}} P\left(\left|X_{n}-X\right|>\epsilon\right)<\infty, \tag{3}
\end{equation*}
$$

then, by the first Borel-Cantelli Lemma, $\left|X_{n}-X\right|>\epsilon$ occurs only finitely often with probability 1, for all $\epsilon>0$. This implies that $X_{n} \xrightarrow{\text { ats. }} X$. 3
Suppose conversely that $X_{n} \xrightarrow{\text { ass. }} X$. Then, $X_{n} \xrightarrow{\text { prob }} X$. ${ }^{3}$ By hint, X is almost surely constant. Hence, $X_{n} \xrightarrow{\text { ass. }} c, \mathcal{L}_{c} \in \mathbb{R}$. Then, by formal (limit) definition of almost convergence, for any $\epsilon>0$, only finitely many of the independent events $\left|X_{n}-c\right|>\epsilon$ occur with probability 1 . Using second Borel-Cantelli lemma, so $\frac{2}{2}$

$$
3 \begin{aligned}
& 2 \\
& \sum_{n \in \mathbb{N}} P\left(\left|X_{n}-c\right|>\epsilon\right)<\infty . . . ~ . ~ \\
& \hline
\end{aligned}
$$

\cdots
[Problem 5] a) Since $X=X^{+}-X^{-}$, it is enough to show for $X \geq 0$. By Equation (1):

$$
\begin{aligned}
& \int_{A} X d P=\int_{\Omega} \stackrel{\mathbb{1}_{A} X d P}{\stackrel{1}{2}}=\int_{\Omega} \lim _{n \rightarrow \infty} \frac{1}{\mathbb{1}_{A} X_{n} d P} \\
& \begin{array}{l}
\text { (by } 2)= \\
\lim _{n \rightarrow \infty}
\end{array} \int_{\Omega} \mathbb{1}_{A}\left\{\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} \mathbb{1}_{\left\{\frac{k-1}{\left.2^{n} \leq X(\omega)<\frac{k}{2^{n}}\right\}}\right.}+n \mathbb{1}_{\{X \geq n\}}\right\} d P \\
& (\text { by } 1)=\lim _{n \rightarrow \infty}\left\{\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} P\left(\left\{\frac{k-1}{2^{n}} \leq X(\omega)<\frac{k}{2^{n}}\right\} \cap A\right)+n P(\{X \geq n\} \cap A)\right\} \\
& 2(\text { by 3-4 })=0
\end{aligned}
$$

(1) $\mathbb{1}_{C \cap D}=\mathbb{1}_{C} \cdot \mathbb{1}_{D}$
(2) $\mathbb{1}_{A} X_{n} \uparrow \mathbb{1}_{A} X$ and $\mathbb{1}_{A} X_{n} \geq 0$, hence Monotone Convergence Theorem is applicable.
(3) A is P-negligible; hence $P(A)=0$.
(4) $B \subseteq C$, then $P(B) \leq P(C)$.
b)

$$
\begin{aligned}
& \int_{A} X d P=\int_{\Omega} \mathbb{1}_{A} X d P=\int_{\Omega} \mathbb{1}_{\cup_{n=\mathbb{N}} A_{n}} X d P \\
&\left.\begin{array}{rl}
\\
3 & (\text { by } 1,3)=\int_{\Omega} \frac{\lim _{n \rightarrow \infty}}{\mathbb{1}_{A_{n}} X^{+} d P-\int_{\Omega}} \frac{\lim _{n \rightarrow \infty} \mathbb{1}_{A_{n}} X^{-} d P}{\int_{n}} \\
3 & (\text { by } 2)=\lim _{n \rightarrow \infty} \int_{\Omega} \mathbb{1}_{A_{n}} X^{+} d P-\lim _{n \rightarrow \infty} \int_{\Omega} \mathbb{1}_{A_{n}} X^{-} d P \\
& =\lim _{n \rightarrow \infty} \int_{\Omega} \mathbb{1}_{A_{n}}\left(X^{+}-X^{-}\right) \\
& =\lim _{n \rightarrow \infty} \int_{\Omega} \mathbb{1}_{A_{n}} X d P P_{\uparrow} \\
& =\lim _{n \rightarrow \infty} \int_{A_{n}} X d P
\end{array}\right)
\end{aligned}
$$

(1) $X=X^{+}-X^{-}(1)$
(2) $\mathbb{1}_{A_{n}} X^{+} \uparrow \mathbb{1}_{A} X^{+}$and $\mathbb{1}_{A_{n}} X^{-} \uparrow \mathbb{1}_{A} X^{-}$and both of the sequences are with nonegative terms, hence Monotone convergence theorem is applicable. (3)
(3) Note that $\int_{\Omega} \mathbb{1}_{A_{n}} X d P=E\left[\mathbb{1}_{A_{n}} X\right]$, hence it is allowed to separate limit.

