Abel Summation. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of real numbers, and let $s_{n}=\sum_{k=1}^{n} a_{k}$. Then

$$
\sum_{n=1}^{N} a_{n} b_{n}=s_{N} b_{N}+\sum_{n=1}^{N-1} s_{n}\left(b_{n}-b_{n+1}\right) .
$$

If $\lim _{N \rightarrow \infty} s_{N} b_{N}=0$, then

$$
\sum_{n=1}^{\infty} a_{n} b_{n}=\sum_{n=1}^{\infty} s_{n}\left(b_{n}-b_{n+1}\right)
$$

in the sense that either the two series both diverge or they converge to the same limit.

Proof: Note that $a_{n}=s_{n}-s_{n-1}$ for $n>1$, and that this formula even holds for $n=1$ if we define $s_{0}=0$. Hence

$$
\sum_{n=1}^{N} a_{n} b_{n}=\sum_{n=1}^{N}\left(s_{n}-s_{n-1}\right) b_{n}=\sum_{n=1}^{N} s_{n} b_{n}-\sum_{n=1}^{N} s_{n-1} b_{n}
$$

Changing the index of summation and using that $s_{0}=0$, we see that $\sum_{n=1}^{N} s_{n-1} b_{n}=$ $\sum_{n=1}^{N-1} s_{n} b_{n+1}$. Putting this into the formula above, we get

$$
\sum_{n=1}^{N} a_{n} b_{n}=\sum_{n=1}^{N} s_{n} b_{n}-\sum_{n=1}^{N-1} s_{n} b_{n+1}=s_{N} b_{N}+\sum_{n=1}^{N-1} s_{n}\left(b_{n}-b_{n+1}\right)
$$

and the first part of the lemma is proved. The second follows by letting $N \rightarrow \infty$.

