Some misprints in J.B. Walsh "Knowing the Odds'

(Updated September 13th, 2022) This list only contains misprints that can be mathematically confusing. Lines with a negative number are counted from the bottom of the page; hence line -11 is page 11 from the bottom.
page 4, line -6: \mathcal{F} should be \mathcal{F}_{0}.
page 120, exercise 4.1: In a), the right hand side should be $\cup_{m=0}^{\infty} \cap_{j=m}^{\infty} \Lambda_{j}$. In

page 135, line 1: There are $3 n(n-1)$ (and not $n(n-1)$) terms of the form $E\left(X_{i}^{2} X_{j}^{2}\right)$ for each pair (i, j) with $i \neq j$ (see https://www.uio.no/studier/ emner/matnat/math/STK-MAT3710/h19/stkmat3710h19los.pdf). The rest of the argument works fine anyway.
page 144, line 7: The definition should be

$$
f(x)=\sum_{k} \frac{k}{2^{n}} I_{B_{k n}}(x)
$$

page 144, line 9: $f_{n}(X)=\underline{X}_{n}$ should be $f_{n}(X)=\underline{Y}_{n}$.
page 148, problem 5.11: Three misprints: In the first line of a), $S_{n}(\omega)$ should be $S_{k}(\omega)$. In d), X_{k}^{2} should be S_{k}^{2}. In equation (5.4), the first occurence of S_{n} should be S_{k}.
page 153, line 9: $|\phi(s+t)-\phi(s)|$ should be $|\phi(s+t)-\phi(t)|$.
page 154, line -4: $e^{h x}$ should be $e^{i h x}$, and $e^{-h x}$ should be $e^{-i h x}$.
page 161, problem 6.4: $e^{\frac{z^{2} \sigma^{2}}{2}-z \mu}$ should be $e^{\frac{z^{2} \sigma^{2}}{2}+z \mu}$.
page 162, problem 6.11: Three misprints: In lines 5 and $6, f$ should be ϕ. In line $\overline{7, \phi(t) 0)}$ should be $\phi\left(t_{0}\right)$.
page 172, line -12 : The problem referred to seems to be 6.34 .
page 177, line 4: $\frac{S_{n}-\mu}{\sqrt{n}}$ should be $\frac{S_{n}-n \mu}{\sqrt{n}}$.
page 177, line 11: The lemma seems to be lemma 6.34.
page 179 , line -1 : $\left(1-\theta_{j n}\right)$ should be $\left(1+\theta_{j n}\right)$.
page 192, line 22: Theorem 1.7 should be Theorem 1.8.
page 270, line -13: $Z_{n} \leq\{X \mid \mathcal{G}\}$ should be $Z_{n} \leq E\{X \mid \mathcal{G}\}$.
page 289, line -11: X_{T} should be Z_{T}.

