UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: STK-MAT3710/4710 - Probability Theory.

Day of examination: Wednesday, December 11th, 2019.
Examination hours: $14.30-18.30$.
This problem set consists of 2 pages.
Appendices: Formula sheet.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All items (Problems 1, 2a, 2b etc.) count equally. If there is a problem you can not solve, you may still use the result in the sequel. All answers have to be substantiated.

Problem 1 (10 points)
Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be independent and identically distributed random variables taking values in the set $\{1,2,3,4,5,6\}$. Assume that $P\left(\left[X_{n}=\right.\right.$ $i])=\frac{1}{6}$ for $i=1,2,3,4,5,6$. Show that for almost all ω, the sequence $X_{1}(\omega), X_{2}(\omega), X_{3}(\omega), \ldots$ contains infinitely many occurences of 17 consecutive 6's.

Problem 2

A distribution function is given by

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x<-1 \\
\frac{1}{2}(x+1) & \text { for }-1 \leq x \leq 1 \\
1 & \text { for } x>1
\end{array}\right.
$$

a) (10 points) Find a real expression for the characteristic function of F.
b) (10 points) Assume that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of independent random variables with distribution function F. Find the characteristic function of

$$
S_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{n}}
$$

c) (10 points) Use the result in b) to "show directly" that S_{n} converges in distribution to a normal distribution ("show directly" means that you are not allowed to use a version of the Central Limit Theorem).

Problem 3

In this problem, (Ω, \mathcal{F}, P) is a probability space; \mathbb{N} is the timeline; and $\left\{M_{n}\right\}_{n \in \mathbb{N}}$ is a martingale with respect to a filtration $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ on (Ω, \mathcal{F}, P). We assume that all M_{n} have finite second moments, and for each $n \in \mathbb{N}$, we let $\Delta M_{n}=M_{n+1}-M_{n}$ be the forward increment of M.
a) (10 points) Show that if $n \leq m$, then $E\left[\Delta M_{m} \mid \mathcal{F}_{n}\right]=0$ and $E\left[\Delta M_{m} M_{n} \mid \mathcal{F}_{n}\right]=0$.
b) (10 points) Show that if $n<m$, then $E\left[\Delta M_{m} \Delta M_{n} \mid \mathcal{F}_{n}\right]=0$.
c) (10 points) Show that if $n<m$, then

$$
E\left[\left(M_{m}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right]=\sum_{k=n}^{m-1} E\left[\Delta M_{k}^{2} \mid \mathcal{F}_{n}\right]
$$

Problem 4

Recall that a function $F: \mathbb{R} \rightarrow \mathbb{R}$ is a distribution function if
(i) F is right continuous and increasing
(ii) $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$.
a) (10 points) Show that if F is a distribution function and Y is a random variable, then

$$
K(x)=E[F(x-Y)]
$$

is also a distribution function. (To save time, you need only check one of the two conditions $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$.)

In the rest of the problem, $X, Y: \Omega \rightarrow \mathbb{R}$ are two independent random variables with distribution functions F and G, respectively. Our aim is to show that the distribution function H of $X+Y$ is given by

$$
\begin{equation*}
H(x)=E[F(x-Y)] \tag{1}
\end{equation*}
$$

b) (10 points) Assume first that Y is of the form $Y=\sum_{n=1}^{\infty} a_{n} \mathbf{1}_{A_{n}}$, where the a_{n} 's are distinct real numbers and $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is a partition of Ω; i.e. the sets are mutually disjoint and their union is all of Ω. Show that (1) holds in this case. Specify where you use the independence of X and Y.
c) (10 points) If Y is a general random variable, let

$$
\underline{Y}_{n}=\sum_{k=-\infty}^{\infty} \frac{k}{2^{n}} \mathbf{1}_{\left(k 2^{-n},(k+1) 2^{-n}\right]}
$$

be the usual lower approximation of Y. Show that

$$
E[F(x-Y)]=\lim _{n \rightarrow \infty} E\left[F\left(x-\underline{Y}_{n}\right)\right] .
$$

d) (10 points) Show that equation (1) holds for all random variables Y that are independent of X. Conclude that

$$
H(x)=\int_{-\infty}^{\infty} F(x-y) d G(y)
$$

