UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

STK-MAT3710/4710 — Probability Theory.
Wednesday, December 11th, 2019.
14.30 - 18.30.
sists of 2 pages.
Formula sheet.
None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All items (Problems 1, 2a, 2b etc.) count equally. If there is a problem you can not solve, you may still use the result in the sequel. All answers have to be substantiated.

Problem 1 (10 points)

Let $\{X_n\}_{n\in\mathbb{N}}$ be independent and identically distributed random variables taking values in the set $\{1, 2, 3, 4, 5, 6\}$. Assume that $P([X_n = i]) = \frac{1}{6}$ for i = 1, 2, 3, 4, 5, 6. Show that for almost all ω , the sequence $X_1(\omega), X_2(\omega), X_3(\omega), \ldots$ contains infinitely many occurrences of 17 consecutive 6's.

Problem 2

A distribution function is given by

$$F(x) = \begin{cases} 0 & \text{for } x < -1\\ \frac{1}{2}(x+1) & \text{for } -1 \le x \le 1\\ 1 & \text{for } x > 1 \end{cases}$$

- a) (10 points) Find a real expression for the characteristic function of F.
- b) (10 points) Assume that $\{X_n\}_{n \in \mathbb{N}}$ is a sequence of independent random variables with distribution function F. Find the characteristic function of

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}}$$

c) (10 points) Use the result in b) to "show directly" that S_n converges in distribution to a normal distribution ("show directly" means that you are not allowed to use a version of the Central Limit Theorem).

Problem 3

In this problem, (Ω, \mathcal{F}, P) is a probability space; \mathbb{N} is the timeline; and $\{M_n\}_{n\in\mathbb{N}}$ is a martingale with respect to a filtration $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ on (Ω, \mathcal{F}, P) . We assume that all M_n have finite second moments, and for each $n \in \mathbb{N}$, we let $\Delta M_n = M_{n+1} - M_n$ be the forward increment of M.

- a) (10 points) Show that if $n \leq m$, then $E[\Delta M_m | \mathcal{F}_n] = 0$ and $E[\Delta M_m M_n | \mathcal{F}_n] = 0$.
- b) (10 points) Show that if n < m, then $E[\Delta M_m \Delta M_n | \mathcal{F}_n] = 0$.
- c) (10 points) Show that if n < m, then

$$E[(M_m - M_n)^2 | \mathcal{F}_n] = \sum_{k=n}^{m-1} E[\Delta M_k^2 | \mathcal{F}_n]$$

Problem 4

Recall that a function $F \colon \mathbb{R} \to \mathbb{R}$ is a distribution function if

- (i) F is right continuous and increasing
- (ii) $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$.
- a) (10 points) Show that if F is a distribution function and Y is a random variable, then

$$K(x) = E[F(x - Y)]$$

is also a distribution function. (To save time, you need only check one of the two conditions $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$.)

In the rest of the problem, $X, Y: \Omega \to \mathbb{R}$ are two independent random variables with distribution functions F and G, respectively. Our aim is to show that the distribution function H of X + Y is given by

$$H(x) = E[F(x - Y)].$$
⁽¹⁾

- b) (10 points) Assume first that Y is of the form $Y = \sum_{n=1}^{\infty} a_n \mathbf{1}_{A_n}$, where the a_n 's are distinct real numbers and $\{A_n\}_{n \in \mathbb{N}}$ is a partition of Ω ; i.e. the sets are mutually disjoint and their union is all of Ω . Show that (1) holds in this case. Specify where you use the independence of X and Y.
- c) (10 points) If Y is a general random variable, let

$$\underline{Y}_n = \sum_{k=-\infty}^{\infty} \frac{k}{2^n} \mathbf{1}_{(k2^{-n},(k+1)2^{-n}]}$$

be the usual lower approximation of Y. Show that

$$E[F(x - Y)] = \lim_{n \to \infty} E[F(x - \underline{Y}_n)].$$

d) (10 points) Show that equation (1) holds for all random variables Y that are independent of X. Conclude that

$$H(x) = \int_{-\infty}^{\infty} F(x-y) \, dG(y)$$

The End