Exam in STK-MAT3710/4710, Fall 2019. Solutions

Problem 1

Cut \mathbb{N} into sequences of length 17 :
$I_{0}=\{1,2, \ldots, 17\}, I_{1}=\{18,19, \ldots, 34\}, \ldots, I_{k}=\{17 k+1,17 k+2, \ldots, 18 k\}, \ldots$.
The sets

$$
A_{k}=\left\{\omega: X_{j}(\omega)=6 \text { for all } j \in I_{k}\right\}
$$

are independent and have probability $P\left(A_{k}\right)=\frac{1}{6^{17}}>0$. Hence $\sum_{k=0}^{\infty} P\left(A_{k}\right)=$ ∞. According to the Converse Borel-Cantelli Lemma, $\lim \sup A_{k}$ has probability 1 , and each ω in $\lim \sup A_{k}$ clearly contains infinitely many occurences of 17 consecutive 6's.

Problem 2

a) Differentiating we see that the distribution has the density

$$
f(x)= \begin{cases}0 & \text { for } x<-1 \\ \frac{1}{2} & \text { for }-1 \leq x \leq 1 \\ 0 & \text { for } x>1\end{cases}
$$

The characteristic function is

$$
\begin{aligned}
& \phi(t)=\int_{-\infty}^{\infty} e^{i t x} f(x) d x=\frac{1}{2} \int_{-1}^{1} e^{i t x} d x \\
& =\frac{1}{2}\left[\frac{e^{i t x}}{i t}\right]_{x=-1}^{x=1}=\frac{e^{i t}-e^{-i t}}{2 i t}=\frac{\sin t}{t}
\end{aligned}
$$

b) We have

$$
\begin{gathered}
\phi_{S_{n}}(t)=E\left[e^{i t S_{n}}\right]=E\left[e^{i \frac{t}{\sqrt{n}} X_{1}} e^{i \frac{t}{\sqrt{n}} X_{2}} \cdot \ldots \cdot e^{i \frac{t}{\sqrt{n}} X_{n}}\right] \\
=E\left[e^{i \frac{t}{\sqrt{n}} X_{1}}\right] E\left[e^{i \frac{t}{\sqrt{n}} X_{2}}\right] \cdot \ldots \cdot E\left[e^{i \frac{t}{\sqrt{n}} X_{n}}\right]=\left(\phi\left(\frac{t}{\sqrt{n}}\right)\right)^{n}=\left(\frac{\sin \frac{t}{\sqrt{n}}}{\frac{t}{\sqrt{n}}}\right)^{n}
\end{gathered}
$$

c) The Taylor expansion of the sine function is

$$
\sin x=x-\frac{x^{3}}{6}+o\left(x^{3}\right)
$$

and hence

$$
\frac{\sin \frac{t}{\sqrt{n}}}{\frac{t}{\sqrt{n}}}=1-\frac{t^{2}}{6 n}+o\left(\frac{t^{2}}{n}\right)
$$

Consequently (e.g. by Lemma 6.34)

$$
\phi_{S_{n}}(t)=\left(1-\frac{t^{2}}{6 n}+o\left(\frac{t^{2}}{n}\right)\right)^{n} \rightarrow e^{-\frac{t^{2}}{6}}
$$

As $e^{-\frac{t^{2}}{6}}$ is the characteristic function of a normal distribution with mean 0 and variance $\sigma^{2}=\frac{1}{3}$, the result follows from Lévy's Continuity Theorem.

Problem 3

a) Note first that

$$
E\left[\Delta M_{m} \mid \mathcal{F}_{n}\right]=E\left[M_{m+1} \mid \mathcal{F}_{n}\right]-E\left[M_{m} \mid \mathcal{F}_{n}\right]=M_{n}-M_{n}=0
$$

by the martingale property.
For the second part, observe that since M_{n} is \mathcal{F}_{n}-measurable, we have

$$
E\left[\Delta M_{m} M_{n} \mid \mathcal{F}_{n}\right]=M_{n} E\left[\Delta M_{m} \mid \mathcal{F}_{n}\right]=0
$$

where the last step uses what we just proved above.
b) As ΔM_{n} is \mathcal{F}_{m}-measurable, we have by the tower property

$$
\begin{aligned}
& E\left[\Delta M_{m} \Delta M_{n} \mid \mathcal{F}_{n}\right]=E\left[E\left[\Delta M_{n} \Delta M_{m} \mid \mathcal{F}_{m}\right] \mid \mathcal{F}_{n}\right] \\
= & E\left[\Delta M_{n} E\left[\Delta M_{m} \mid \mathcal{F}_{m}\right] \mid \mathcal{F}_{n}\right]=E\left[\Delta M_{n} \cdot 0 \mid \mathcal{F}_{n}\right]=0
\end{aligned}
$$

c) Since $M_{m}-M_{n}=\sum_{k=n}^{m-1} \Delta M_{k}$, we have

$$
\begin{gathered}
E\left[\left(M_{m}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right]=E\left[\left(\sum_{k=n}^{m-1} \Delta M_{k}\right)^{2} \mid \mathcal{F}_{n}\right]=\sum_{i, j=n}^{m-1} E\left[\Delta M_{i} \Delta M_{j} \mid \mathcal{F}_{n}\right] \\
=2 \sum_{n \leq i<j \leq m-1} E\left[\Delta M_{i} \Delta M_{j} \mid \mathcal{F}_{n}\right]+\sum_{k=n}^{m-1} E\left[\Delta M_{k}^{2} \mid \mathcal{F}_{n}\right]
\end{gathered}
$$

All terms in the first sum are zero since by b) and the tower property, we have:

$$
E\left[\Delta M_{i} \Delta M_{j} \mid \mathcal{F}_{n}\right]=E\left[E\left[\Delta M_{i} \Delta M_{j} \mid \mathcal{F}_{i}\right] \mid \mathcal{F}_{n}\right]=E\left[0 \mid \mathcal{F}_{n}\right]=0
$$

Hence

$$
E\left[\left(M_{m}^{2}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right]=\sum_{k=n}^{m-1} E\left[\Delta M_{k}^{2} \mid \mathcal{F}_{n}\right]
$$

Problem 4

a) Assume $x_{1}<x_{2}$. As F is increasing, we have

$$
K\left(x_{1}\right)=E\left[F\left(x_{1}-Y\right)\right] \leq E\left[F\left(x_{2}-Y\right)\right]=K\left(x_{2}\right)
$$

which shows that K is increasing. To prove right continuity, note that if $\left\{x_{n}\right\}$ is a sequence decreasing to x, the Bounded Convergence Theorem tells us that (note that the integrand is bounded by 1):
$\lim _{n \rightarrow \infty} K\left(x_{n}\right)=\lim _{n \rightarrow \infty} E\left[F\left(x_{n}-Y\right)\right]=E\left[\lim _{n \rightarrow \infty} F\left(x_{n}-Y\right)\right]=E[F(x-Y)]=K(x)$
since F is right continuous. It follows that K is right continuous.
To check the limit conditions, first note that if $x \rightarrow-\infty$, then $x-Y \rightarrow-\infty$, and hence $\lim _{x \rightarrow-\infty} F(x-Y)=0$. Applying the Bounded Convergence Theorem again, we see that if $x_{n} \rightarrow-\infty$, then

$$
\lim _{n \rightarrow \infty} K\left(x_{n}\right)=\lim _{n \rightarrow \infty} E\left[F\left(x_{n}-Y\right)\right]=E\left[\lim _{n \rightarrow \infty} F\left(x_{n}-Y\right)\right]=E[0]=0
$$

The other limit is similar: If $x_{n} \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} K\left(x_{n}\right)=\lim _{n \rightarrow \infty} E\left[F\left(x_{n}-Y\right)\right]=E\left[\lim _{n \rightarrow \infty} F\left(x_{n}-Y\right)\right]=E[1]=1
$$

as $\lim _{x \rightarrow \infty} F(x)=1$.
b) We have

$$
\begin{aligned}
H(x) & =P[X+Y \leq x]=P\left[X+\sum_{n \in \mathbb{N}} a_{n} \mathbf{1}_{A_{n}} \leq x\right]=\sum_{n \in \mathbb{N}} P\left(\left[X \leq x-a_{n}\right] \cap A_{n}\right) \\
& =\sum_{n \in \mathbb{N}} P\left(\left[X \leq x-a_{n}\right] \cap\left[Y=a_{n}\right]\right)=\sum_{n \in \mathbb{N}} P\left[X \leq x-a_{n}\right] P\left[Y=a_{n}\right] \\
& =\sum_{n \in \mathbb{N}} P\left[X \leq x-a_{n}\right] P\left[A_{n}\right]=\sum_{n \in \mathbb{N}} F\left(x-a_{n}\right) P\left[A_{n}\right]=E[F(x-Y)]
\end{aligned}
$$

where we have used the independence to get the equality in the middle of the second line.
c) As \underline{Y}_{n} increases to Y, we see that $x-\underline{Y}_{n}$ approaches $x-Y$ from the right, and since F is right continuous, it follows that $F\left(x-Y_{n}\right) \rightarrow F(x-Y)$. Using the Bounded Convergence Theorem again, we get

$$
\lim _{n \rightarrow \infty} E\left[F\left(x-\underline{Y}_{n}\right)\right]=E\left[\lim _{n \rightarrow \infty} F\left(x-\underline{Y}_{n}\right)\right]=E[F(x-Y)] .
$$

d) If H_{n} is the distribution function of $X+Y_{n}$, we know from b) that

$$
H_{n}(x)=E\left[F\left(x-Y_{n}\right)\right]
$$

and we have already seen that the right hand side converges pointwise to $K(x)=$ $E[F(x-Y)]$ which is a distribution function by a). On the other hand, H_{n} is the distribution function of $X+\underline{Y}_{n}$ and since $X+\underline{Y}_{n}$ converges pointwise (and hence in distribution) to $X+Y$, the distribution functions H_{n} converge to the distribution function H of $X+Y$ at all continuity points of H. This means that the two distribution functions H and K coincide at all continuity points of H, and hence they have to be equal for all x.

The last formula,

$$
H(x)=\int_{-\infty, \infty} F(x-y) d G(y)
$$

follows immediately from $H(x)=E[F(x-Y)]$ as we have $E[f(Y)]=\int_{-\infty}^{\infty} f(y) d G(y)$ for all Borel functions f.

