STK-MAT3710/4710: Solution to Exam 2022

Problem 1 a) We have

$$\phi_a(t) = E[e^{itY_a}] = e^{it(1+a)} \cdot \frac{1}{2} + e^{it(-1+a)} \cdot \frac{1}{2}$$
$$= e^{iat} \frac{e^{it} + e^{-it}}{2} = e^{ita} \cos t$$

b) Using the independence of $X_1^{(n)}, X_2^{(n)}, \ldots, X_n^{(n)}$, we get

$$\phi_{S_n}(t) = E[e^{itS_n}] = E\left[e^{it\frac{X_1^{(n)} + X_2^{(n)} + \dots + X_n^{(n)}}{\sqrt{n}}}\right]$$
$$= E\left[e^{i\frac{t}{\sqrt{n}}X_1^{(n)}}\right] \cdot E\left[e^{i\frac{t}{\sqrt{n}}X_2^{(n)}}\right] \cdot \dots \cdot E\left[e^{i\frac{t}{\sqrt{n}}X_n^{(n)}}\right]$$
$$= \left[\phi_{\frac{1}{\sqrt{n}}}\left(\frac{t}{\sqrt{n}}\right)\right]^n = \left[e^{i\frac{t}{\sqrt{n}}\cdot\frac{1}{\sqrt{n}}}\cos\frac{t}{\sqrt{n}}\right]^n = e^{it}\left[\cos\frac{t}{\sqrt{n}}\right]^n$$

c) Using the Taylor expansion $\cos x = 1 - \frac{x^2}{2} + o(x^2)$, we get

$$\lim_{n \to \infty} \left[\cos \frac{t}{\sqrt{n}} \right]^n = \lim_{n \to \infty} \left[1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right) \right]^n = e^{-\frac{t^2}{2}}$$

by Lemma 6.34. This means that

$$\lim_{n \to \infty} \phi_{S_n}(t) = e^{it - \frac{t^2}{2}}$$

which is the characteristic function of an $\mathcal{N}(1,1)$ random variable. By Lévy's Continuity Theorem, S_n converges in distribution to a normal distribution with mean 1 and variance 1.

Problem 2 Let A_n be the event that you win on day n. Then the A_n 's are independent (we must assume) and $P(A_n) = \frac{1}{99+n}$. The series

$$\sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} \frac{1}{99+n}$$

diverges (it is the tail of the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$), and thus the probability of winning infinitely many times is 1 by the Borel-Cantelli Lemma.

Problem 3 Let $\mathcal{M} = \{\Lambda : \int_{\Lambda} X dP = \int_{\Lambda} Y dP\}$; we must prove that \mathcal{M} is closed under increasing unions and decreasing intersections.

Assume first that $\{\Lambda_n\}$ is an increasing sequence of sets in \mathcal{M} with union Λ . Since the sequence $\{\mathbf{1}_{\Lambda_n}X\}$ is dominated by the integrable function |X|, the Dominated Convergence Theorem tells us that

$$\int_{\Lambda} X \, dP = \int \mathbf{1}_{\Lambda} X \, dP = \int \lim_{n \to \infty} \mathbf{1}_{\Lambda_n} X \, dP \stackrel{DCT}{=} \lim_{n \to \infty} \int \mathbf{1}_{\Lambda_n} X \, dP = \lim_{n \to \infty} \int_{\Lambda_n} X \, dP$$

and similarly,

$$\int_{\Lambda} Y \, dP = \lim_{n \to \infty} \int_{\Lambda_n} Y \, dP.$$

This shows that $\int_{\Lambda} X \, dP = \int_{\Lambda} Y \, dP$, and hence $\Lambda \in \mathcal{M}$. Assume now that $\{\Lambda_n\}$ is a decreasing sequence of sets in \mathcal{M} with intersection A. As above, the sequence $\{\mathbf{1}_{\Lambda_n}X\}$ is dominated by the integrable function |X|, and the Dominated Convergence Theorem gives

$$\int_{\Lambda} X \, dP = \int \mathbf{1}_{\Lambda} X \, dP = \int \lim_{n \to \infty} \mathbf{1}_{\Lambda_n} X \, dP \stackrel{DCT}{=} \lim_{n \to \infty} \int \mathbf{1}_{\Lambda_n} X \, dP = \lim_{n \to \infty} \int_{\Lambda_n} X \, dP$$

and similarly,

$$\int_{\Lambda} Y \, dP = \lim_{n \to \infty} \int_{\Lambda_n} Y \, dP.$$

This shows that $\int_{\Lambda} X \, dP = \int_{\Lambda} Y \, dP$, and hence $\Lambda \in \mathcal{M}$.

Problem 4 Let $Y_n = \mathbf{1}_{A_n}$. Then $E[Y_n] = P(A_n)$, and the random variables $Z_n = Y_n - P(A_n)$ have mean 0. Since the Z_n 's are independent and obviously have bounded fourth moments, Cantelli's Strong Law of Large Numbers tells us that $\frac{Z_1+Z_2+\cdots+Z_n}{n}$ converges to 0 a.s. But $X_n = Y_1 + Y_2 + \ldots + Y_n$ and $P_n = P(A_1) + P(A_2) + \cdots + P(A_n)$, and thus

$$\frac{X_n - P_n}{n} = \frac{Z_1 + Z_2 + \dots + Z_n}{n} \to 0 \qquad \text{a.s.}$$

Problem 5

a) To show that

$$Z(\omega) = \sum_{n=1}^{\infty} \mathbf{1}_{[Y=n]}(\omega)(X_1(\omega) + X_2(\omega) + \dots + X_n(\omega)),$$

we first observe that if $Y(\omega) = 0$, then both sides are 0. Next we observe that if $Y(\omega) = n$ for n > 0, then both sides equal $X_1(\omega) + X_2(\omega) + \cdots + X_n(\omega)$, and hence the expressions are equal for all ω .

Taking expectations on both sides of the equation above, we get

$$E[Z] = E\left[\sum_{n=1}^{\infty} \mathbf{1}_{[Y=n]}(X_1 + X_2 + \dots + X_n)\right]$$

Since all terms are positive, the Monotone Convergence Theorem gives

$$E[Z] = E\left[\lim_{m \to \infty} \sum_{n=1}^{m} \mathbf{1}_{[Y=n]}(X_1 + X_2 + \dots + X_n)\right]$$
$$= \lim_{m \to \infty} E\left[\sum_{n=1}^{m} \mathbf{1}_{[Y=n]}(X_1 + X_2 + \dots + X_n)\right]$$

Using the independence of Y and the X_i 's, we see that this equals

$$\lim_{m \to \infty} \left[\sum_{n=1}^{m} E[\mathbf{1}_{[Y=n]}] E[X_1 + X_2 + \dots + X_n] \right]$$

$$= \lim_{m \to \infty} \left[\sum_{n=1}^{m} P[Y = n](\mu_1 + \mu_2 + \dots + \mu_n) \right]$$
$$= \sum_{n=1}^{\infty} P[Y = n](\mu_1 + \mu_2 + \dots + \mu_n)$$

and hence

$$E[Z] = \sum_{n=1}^{\infty} (\mu_1 + \mu_2 + \dots + \mu_n) P[Y = n]$$

b) Using the Monotone Convergence Theorem for conditional expextations, we get

$$E[Z|\mathcal{G}] = E\left[\sum_{n=1}^{\infty} \mathbf{1}_{[Y=n]}(X_1 + X_2 + \dots + X_n)|\mathcal{G}\right]$$
$$= \lim_{m \to \infty} E\left[\sum_{n=1}^{m} \mathbf{1}_{[Y=n]}(X_1 + X_2 + \dots + X_n)|\mathcal{G}\right]$$
$$= \lim_{m \to \infty} \sum_{n=1}^{m} E[\mathbf{1}_{[Y=n]}(X_1 + X_2 + \dots + X_n)|\mathcal{G}]$$

Since Y is \mathcal{G} -measurable and the $\{X_n\}$'s are independent of \mathcal{G} , we have

$$E[\mathbf{1}_{[Y=n]}(X_1 + X_2 + \dots + X_n)|\mathcal{G}] = \mathbf{1}_{[Y=n]}E[X_1 + X_2 + \dots + X_n|\mathcal{G}]$$
$$= \mathbf{1}_{[Y=n]}(\mu_1 + \mu_2 + \dots + \mu_n)$$

and hence

$$E[Z|\mathcal{G}] = \lim_{m \to \infty} \sum_{n=1}^{m} \mathbf{1}_{[Y=n]}(\mu_1 + \mu_2 + \dots + \mu_n)$$
$$= \sum_{n=1}^{\infty} \mathbf{1}_{[Y=n]}(\mu_1 + \mu_2 + \dots + \mu_n).$$

c) Since Z_k is \mathcal{F}_k -measurable by induction, and $X_i^{(k+1)}$ is independent of \mathcal{F}_k by assumption, we get from b) that

$$E[Z_{k+1}|\mathcal{F}_k] = \sum_{n=1}^{\infty} \mathbf{1}_{[Z_k=n]}(\mu + \mu + \dots + \mu) = \mu \sum_{n=1}^{\infty} n \mathbf{1}_{[Z_k=n]} = \mu Z_k.$$

Since $Z_k \ge 0$, we see that $E[Z_{k+1}|\mathcal{F}_k] \ge Z_k$ when $\mu > 1$, $E[Z_{k+1}|\mathcal{F}_k] = Z_k$ for $\mu = 1$, and $E[Z_{k+1}|\mathcal{F}_k] \le Z_k$ when $\mu < 1$. This means that Z_k is a submartingale, a martingale, and a supermartingale according to whether $\mu \ge 1$, $\mu = 1$, or $\mu \le 1$.

d) Using c), we see that

$$E[Y_{k+1}|\mathcal{F}_k] = \frac{1}{\mu^{k+1}} E[Z_{k+1}|\mathcal{F}_k] = \frac{\mu}{\mu^{k+1}} Z_k = Y_k$$

which shows that $Y_k = \frac{Z_k}{\mu^k}$ is a martingale.

e) We use Theorem 6.31: Since $\{Y_k\}$ is a uniformly integrable martingale, Y_k converges a.s. and in L^1 to an integrable random variable Y_∞ such that the augmented process $Y_0, Y_1, \ldots, Y_\infty$ is also a martingale. Hence $E[Y_\infty] = E[Y_0] =$ $E[Z_0] = Z_0 > 0$, which proves that Y_∞ is positive on a set Ω_0 of positive measure. Since $Z_k = \mu^k Y_k$, it follows that Z_k goes to infinity on Ω_0 .