STK-MAT3710/4710: Solution to Exam 2022

Problem 1 a) We have

$$
\begin{aligned}
& \phi_{a}(t)= E\left[e^{i t Y_{a}}\right]=e^{i t(1+a)} \cdot \frac{1}{2}+e^{i t(-1+a)} \cdot \frac{1}{2} \\
&=e^{i a t} \frac{e^{i t}+e^{-i t}}{2}=e^{i t a} \cos t
\end{aligned}
$$

b) Using the independence of $X_{1}^{(n)}, X_{2}^{(n)}, \ldots, X_{n}^{(n)}$, we get

$$
\begin{aligned}
& \phi_{S_{n}}(t)=E\left[e^{i t S_{n}}\right]=E\left[e^{i t \frac{x_{1}^{(n)}+X_{2}^{(n)}+\cdots+x_{n}^{(n)}}{\sqrt{n}}}\right] \\
&= E\left[e^{i \frac{t}{\sqrt{n}} X_{1}^{(n)}}\right] \cdot E\left[e^{i \frac{t}{\sqrt{n}} X_{2}^{(n)}}\right] \cdot \ldots \cdot E\left[e^{i \frac{t}{\sqrt{n}} X_{n}^{(n)}}\right] \\
&=\left[\phi_{\frac{1}{\sqrt{n}}}\left(\frac{t}{\sqrt{n}}\right)\right]^{n}=\left[e^{i \frac{t}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}}} \cos \frac{t}{\sqrt{n}}\right]^{n}=e^{i t}\left[\cos \frac{t}{\sqrt{n}}\right]^{n}
\end{aligned}
$$

c) Using the Taylor expansion $\cos x=1-\frac{x^{2}}{2}+o\left(x^{2}\right)$, we get

$$
\lim _{n \rightarrow \infty}\left[\cos \frac{t}{\sqrt{n}}\right]^{n}=\lim _{n \rightarrow \infty}\left[1-\frac{t^{2}}{2 n}+o\left(\frac{t^{2}}{n}\right)\right]^{n}=e^{-\frac{t^{2}}{2}}
$$

by Lemma 6.34. This means that

$$
\lim _{n \rightarrow \infty} \phi_{S_{n}}(t)=e^{i t-\frac{t^{2}}{2}}
$$

which is the characteristic function of an $\mathcal{N}(1,1)$ random variable. By Lévy's Continuity Theorem, S_{n} converges in distribution to a normal distribution with mean 1 and variance 1 .

Problem 2 Let A_{n} be the event that you win on day n. Then the A_{n} 's are independent (we must assume) and $P\left(A_{n}\right)=\frac{1}{99+n}$. The series

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\sum_{n=1}^{\infty} \frac{1}{99+n}
$$

diverges (it is the tail of the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$), and thus the probability of winning infinitely many times is 1 by the Borel-Cantelli Lemma.

Problem 3 Let $\mathcal{M}=\left\{\Lambda: \int_{\Lambda} X d P=\int_{\Lambda} Y d P\right\}$; we must prove that \mathcal{M} is closed under increasing unions and decreasing intersections.

Assume first that $\left\{\Lambda_{n}\right\}$ is an increasing sequence of sets in \mathcal{M} with union Λ. Since the sequence $\left\{\mathbf{1}_{\Lambda_{n}} X\right\}$ is dominated by the integrable function $|X|$, the Dominated Convergence Theorem tells us that
$\int_{\Lambda} X d P=\int \mathbf{1}_{\Lambda} X d P=\int \lim _{n \rightarrow \infty} \mathbf{1}_{\Lambda_{n}} X d P \stackrel{D C T}{=} \lim _{n \rightarrow \infty} \int \mathbf{1}_{\Lambda_{n}} X d P=\lim _{n \rightarrow \infty} \int_{\Lambda_{n}} X d P$
and similarly,

$$
\int_{\Lambda} Y d P=\lim _{n \rightarrow \infty} \int_{\Lambda_{n}} Y d P
$$

This shows that $\int_{\Lambda} X d P=\int_{\Lambda} Y d P$, and hence $\Lambda \in \mathcal{M}$.
Assume now that $\left\{\Lambda_{n}\right\}$ is a decreasing sequence of sets in \mathcal{M} with intersection Λ. As above, the sequence $\left\{\mathbf{1}_{\Lambda_{n}} X\right\}$ is dominated by the integrable function $|X|$, and the Dominated Convergence Theorem gives
$\int_{\Lambda} X d P=\int \mathbf{1}_{\Lambda} X d P=\int \lim _{n \rightarrow \infty} \mathbf{1}_{\Lambda_{n}} X d P \stackrel{D C T}{=} \lim _{n \rightarrow \infty} \int \mathbf{1}_{\Lambda_{n}} X d P=\lim _{n \rightarrow \infty} \int_{\Lambda_{n}} X d P$
and similarly,

$$
\int_{\Lambda} Y d P=\lim _{n \rightarrow \infty} \int_{\Lambda_{n}} Y d P
$$

This shows that $\int_{\Lambda} X d P=\int_{\Lambda} Y d P$, and hence $\Lambda \in \mathcal{M}$.
Problem 4 Let $Y_{n}=\mathbf{1}_{A_{n}}$. Then $E\left[Y_{n}\right]=P\left(A_{n}\right)$, and the random variables $Z_{n}=Y_{n}-P\left(A_{n}\right)$ have mean 0 . Since the Z_{n} 's are independent and obviously have bounded fourth moments, Cantelli's Strong Law of Large Numbers tells us that $\frac{Z_{1}+Z_{2}+\cdots+Z_{n}}{n}$ converges to 0 a.s. But $X_{n}=Y_{1}+Y_{2}+\ldots+Y_{n}$ and $P_{n}=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right)$, and thus

$$
\frac{X_{n}-P_{n}}{n}=\frac{Z_{1}+Z_{2}+\cdots+Z_{n}}{n} \rightarrow 0 \quad \text { a.s. }
$$

Problem 5

a) To show that

$$
Z(\omega)=\sum_{n=1}^{\infty} \mathbf{1}_{[Y=n]}(\omega)\left(X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)\right)
$$

we first observe that if $Y(\omega)=0$, then both sides are 0 . Next we observe that if $Y(\omega)=n$ for $n>0$, then both sides equal $X_{1}(\omega)+X_{2}(\omega)+\cdots+X_{n}(\omega)$, and hence the expressions are equal for all ω.

Taking expectations on both sides of the equation above, we get

$$
E[Z]=E\left[\sum_{n=1}^{\infty} \mathbf{1}_{[Y=n]}\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]
$$

Since all terms are positive, the Monotone Convergence Theorem gives

$$
\begin{gathered}
E[Z]=E\left[\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \mathbf{1}_{[Y=n]}\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right] \\
\quad=\lim _{m \rightarrow \infty} E\left[\sum_{n=1}^{m} \mathbf{1}_{[Y=n]}\left(X_{1}+X_{2}+\cdots+X_{n}\right)\right]
\end{gathered}
$$

Using the independence of Y and the X_{i} 's, we see that this equals

$$
\lim _{m \rightarrow \infty}\left[\sum_{n=1}^{m} E\left[\mathbf{1}_{[Y=n]}\right] E\left[X_{1}+X_{2}+\cdots+X_{n}\right]\right]
$$

$$
\begin{gathered}
=\lim _{m \rightarrow \infty}\left[\sum_{n=1}^{m} P[Y=n]\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right)\right] \\
=\sum_{n=1}^{\infty} P[Y=n]\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right)
\end{gathered}
$$

and hence

$$
E[Z]=\sum_{n=1}^{\infty}\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right) P[Y=n]
$$

b) Using the Monotone Convergence Theorem for conditional expextations, we get

$$
\begin{aligned}
& E[Z \mid \mathcal{G}]=E\left[\sum_{n=1}^{\infty} \mathbf{1}_{[Y=n]}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \mid \mathcal{G}\right] \\
& =\lim _{m \rightarrow \infty} E\left[\sum_{n=1}^{m} \mathbf{1}_{[Y=n]}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \mid \mathcal{G}\right] \\
& =\lim _{m \rightarrow \infty} \sum_{n=1}^{m} E\left[\mathbf{1}_{[Y=n]}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \mid \mathcal{G}\right]
\end{aligned}
$$

Since Y is \mathcal{G}-measurable and the $\left\{X_{n}\right\}$'s are independent of \mathcal{G}, we have

$$
\begin{gathered}
E\left[\mathbf{1}_{[Y=n]}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \mid \mathcal{G}\right]=\mathbf{1}_{[Y=n]} E\left[X_{1}+X_{2}+\cdots+X_{n} \mid \mathcal{G}\right] \\
=\mathbf{1}_{[Y=n]}\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right)
\end{gathered}
$$

and hence

$$
\begin{aligned}
E[Z \mid \mathcal{G}] & =\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \mathbf{1}_{[Y=n]}\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right) \\
& =\sum_{n=1}^{\infty} \mathbf{1}_{[Y=n]}\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right)
\end{aligned}
$$

c) Since Z_{k} is \mathcal{F}_{k}-measurable by induction, and $X_{i}^{(k+1)}$ is independent of \mathcal{F}_{k} by assumption, we get from b) that

$$
E\left[Z_{k+1} \mid \mathcal{F}_{k}\right]=\sum_{n=1}^{\infty} \mathbf{1}_{\left[Z_{k}=n\right]}(\mu+\mu+\cdots+\mu)=\mu \sum_{n=1}^{\infty} n \mathbf{1}_{\left[Z_{k}=n\right]}=\mu Z_{k}
$$

Since $Z_{k} \geq 0$, we see that $E\left[Z_{k+1} \mid \mathcal{F}_{k}\right] \geq Z_{k}$ when $\mu>1, E\left[Z_{k+1} \mid \mathcal{F}_{k}\right]=Z_{k}$ for $\mu=1$, and $E\left[Z_{k+1} \mid \mathcal{F}_{k}\right] \leq Z_{k}$ when $\mu<1$. This means that Z_{k} is a submartingale, a martingale, and a supermartingale according to whether $\mu \geq 1, \mu=1$, or $\mu \leq 1$.
d) Using c), we see that

$$
E\left[Y_{k+1} \mid \mathcal{F}_{k}\right]=\frac{1}{\mu^{k+1}} E\left[Z_{k+1} \mid \mathcal{F}_{k}\right]=\frac{\mu}{\mu^{k+1}} Z_{k}=Y_{k}
$$

which shows that $Y_{k}=\frac{Z_{k}}{\mu^{k}}$ is a martingale.
e) We use Theorem 6.31: Since $\left\{Y_{k}\right\}$ is a uniformly intergrable martingale, Y_{k} converges a.s. and in L^{1} to an integrable random variable Y_{∞} such that the augmented process $Y_{0}, Y_{1}, \ldots, Y_{\infty}$ is also a martingale. Hence $E\left[Y_{\infty}\right]=E\left[Y_{0}\right]=$ $E\left[Z_{0}\right]=Z_{0}>0$, which proves that Y_{∞} is positive on a set Ω_{0} of positive measure. Since $Z_{k}=\mu^{k} Y_{k}$, it follows that Z_{k} goes to infinity on Ω_{0}

