
STK-MAT3710/4710: Solution to Exam 2022

Problem 1 a) We have
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c) Using the Taylor expansion cosx = 1− x2
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by Lemma 6.34. This means that

lim
n→∞

φSn
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which is the characteristic function of an N (1, 1) random variable. By Lévy’s
Continuity Theorem, Sn converges in distribution to a normal distribution with
mean 1 and variance 1.

Problem 2 Let An be the event that you win on day n. Then the An’s are
independent (we must assume) and P (An) = 1

99+n . The series

∞∑
n=1

P (An) =

∞∑
n=1

1

99 + n

diverges (it is the tail of the divergent harmonic series
∑∞
n=1

1
n ), and thus the

probability of winning infinitely many times is 1 by the Borel-Cantelli Lemma.

Problem 3 Let M = {Λ :
∫

Λ
X dP =

∫
Λ
Y dP}; we must prove that M is

closed under increasing unions and decreasing intersections.
Assume first that {Λn} is an increasing sequence of sets in M with union

Λ. Since the sequence {1Λn
X} is dominated by the integrable function |X|, the

Dominated Convergence Theorem tells us that∫
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and similarly, ∫
Λ

Y dP = lim
n→∞

∫
Λn

Y dP.

This shows that
∫

Λ
X dP =

∫
Λ
Y dP , and hence Λ ∈M.

Assume now that {Λn} is a decreasing sequence of sets in M with intersec-
tion Λ. As above, the sequence {1Λn

X} is dominated by the integrable function
|X|, and the Dominated Convergence Theorem gives∫

Λ

X dP =

∫
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∫
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DCT
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and similarly, ∫
Λ

Y dP = lim
n→∞
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Y dP.

This shows that
∫

Λ
X dP =

∫
Λ
Y dP , and hence Λ ∈M.

Problem 4 Let Yn = 1An
. Then E[Yn] = P (An), and the random variables

Zn = Yn − P (An) have mean 0. Since the Zn’s are independent and obviously
have bounded fourth moments, Cantelli’s Strong Law of Large Numbers tells
us that Z1+Z2+···+Zn

n converges to 0 a.s. But Xn = Y1 + Y2 + . . . + Yn and
Pn = P (A1) + P (A2) + · · ·+ P (An), and thus

Xn − Pn
n

=
Z1 + Z2 + · · ·+ Zn

n
→ 0 a.s.

Problem 5

a) To show that

Z(ω) =

∞∑
n=1

1[Y=n](ω)(X1(ω) +X2(ω) + · · ·+Xn(ω)),

we first observe that if Y (ω) = 0, then both sides are 0. Next we observe that
if Y (ω) = n for n > 0, then both sides equal X1(ω) +X2(ω) + · · ·+Xn(ω), and
hence the expressions are equal for all ω.

Taking expectations on both sides of the equation above, we get

E[Z] = E

[ ∞∑
n=1

1[Y=n](X1 +X2 + · · ·+Xn)

]
Since all terms are positive, the Monotone Convergence Theorem gives
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]
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E
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]
Using the independence of Y and the Xi’s, we see that this equals
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[
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E[1[Y=n]]E[X1 +X2 + · · ·+Xn]

]
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= lim
m→∞

[
m∑
n=1

P [Y = n](µ1 + µ2 + · · ·+ µn)

]

=

∞∑
n=1

P [Y = n](µ1 + µ2 + · · ·+ µn)

and hence

E[Z] =

∞∑
n=1

(µ1 + µ2 + · · ·+ µn)P [Y = n]

b) Using the Monotone Convergence Theorem for conditional expextations,
we get

E[Z|G] = E

[ ∞∑
n=1

1[Y=n](X1 +X2 + · · ·+Xn)|G

]
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m→∞
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m→∞
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Since Y is G-measurable and the {Xn}’s are independent of G, we have

E[1[Y=n](X1 +X2 + · · ·+Xn)|G] = 1[Y=n]E[X1 +X2 + · · ·+Xn|G]

= 1[Y=n](µ1 + µ2 + · · ·+ µn)

and hence

E[Z|G] = lim
m→∞

m∑
n=1

1[Y=n](µ1 + µ2 + · · ·+ µn)

=

∞∑
n=1

1[Y=n](µ1 + µ2 + · · ·+ µn).

c) Since Zk is Fk-measurable by induction, and X
(k+1)
i is independent of Fk

by assumption, we get from b) that

E[Zk+1|Fk] =

∞∑
n=1

1[Zk=n](µ+ µ+ · · ·+ µ) = µ

∞∑
n=1

n1[Zk=n] = µZk.

Since Zk ≥ 0, we see that E[Zk+1|Fk] ≥ Zk when µ > 1, E[Zk+1|Fk] = Zk for
µ = 1, and E[Zk+1|Fk] ≤ Zk when µ < 1. This means that Zk is a submartin-
gale, a martingale, and a supermartingale according to whether µ ≥ 1, µ = 1,
or µ ≤ 1.

d) Using c), we see that

E[Yk+1|Fk] =
1

µk+1
E[Zk+1|Fk] =

µ

µk+1
Zk = Yk

which shows that Yk = Zk

µk is a martingale.
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e) We use Theorem 6.31: Since {Yk} is a uniformly intergrable martingale,
Yk converges a.s. and in L1 to an integrable random variable Y∞ such that the
augmented process Y0, Y1, . . . , Y∞ is also a martingale. Hence E[Y∞] = E[Y0] =
E[Z0] = Z0 > 0, which proves that Y∞ is positive on a set Ω0 of positive
measure. Since Zk = µkYk, it follows that Zk goes to infinity on Ω0.
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