
STK-MAT3710/4710: Solution to
Mandatory Assignment, Fall 2022

Problem 1. a) As Xn(0) =
√
n for all n, and X(0) = 0, the sequence does

not converge at 0, and hence it does not converge pointwise.

b) For any x > 0, we see thatXn(x) = 0 for n > 1
x , and hence limn→∞Xn(x) =

0. This means that convergence only fails on the set {0} which has proba-
bility 0, and hence {Xn} converges to 0 a.s.

c) For any ε > 0, we have

{x ∈ ω : |Xn(ω)| ≥ ε} ⊆
[
0,

1

n

]
,

and thus

P ({x ∈ ω : |Xn(ω)| ≥ ε}) ≤ P
([

0,
1

n

])
=

1

n
→ 0

This shows that the sequence converges to 0 in probability. One may also
use b) and the fact that a.s. convergence implies convergence in probability
(Proposition 4.5).

d) We have

E[|Xn − 0|] = E[Xn] =
√
n · 1

n
=

1√
n
→ 0

which shows that the sequence converges to 0 in L1.

e) We have

E[|Xn − 0|2] = E[X2
n] = (

√
n)2 · 1

n
=
n

n
= 1

which shows that the sequence does not converge to 0 in L2.

f) The distribution function of the constant random variable X = 0 is

F (x) =


0 if x < 0

1 if x ≥ 0

The distribution function of Xn is

Fn(x) =


0 if x < 0

1− 1
n if 0 ≤ x <

√
n

1 if x ≥
√
n
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We see that Fn(x)→ F (x) for all x, and hence {Xn} converges to X = 0 in
distribution. (To see this, note that for x < 0, Fn(x) = F (x) = 0 and hence
the convergence is obvious. For x ≥ 0, we see that when n gets big, x <

√
n,

and hence Fn(x) = 1− 1
n . Consequently, limn→∞ Fn(x) = 1 = F (x).)

Comment: Many solves this problem by combining c) and the assertion
that convergence in probability implies convergence in distribution. The
assertion is correct, but I can’t remember that we have covered it.

Problem 2. By Lyapounov’s second inequality (Corollary 3.23),

E[|X −Xn|p]1/p ≤ E[|X −Xn|q]1/q,

and hence
E[|X −Xn|p] ≤ E[|X −Xn|q]p/q → 0

as n→∞.

Problem 3. a) Differentiating, we get

φ′(u) =
2u · (α+ u)2 − (σ2 + u2) · 2 · (α+ u)

(α+ u)4

=
2u(α+ u)− 2(σ2 + u2)

(α+ u)3
=

2uα− 2σ2

(α+ u)3

which is 0 for u = σ2

α . As φ′(u) < 0 when u < σ2

α , and φ′(u) > 0 when

u > σ2

α , we see that u = σ2

α is the minimum point. The minimum value is

φ

(
σ2

α

)
=
σ2 +

(
σ2

α

)2
(α+ σ2

α )2
=

σ2

α2 (α2 + σ2)
1
α2 (α2 + σ2)2

=
σ2

σ2 + α2

b) Note that if X(ω) < α, then the left hand side of the inequality is
zero while the right hand side is nonnegative, so the inequality holds. If,
on the other hand, X(ω) ≥ α, then X(ω) + u ≥ α + u > 0, and hence
(X+u)2

(α+u)2
≥ 1 ≥ 1{X≥α}.

c) For any u > 0, we know from b) that

P{ω : X(ω) ≥ α} = E
[
1{X≥α}

]
≤ E

[
(X + u)2

(α+ u)2

]
=

σ2 + u2

(α+ u)2

By a), the smallest possible value of the expression on the right is σ2

σ2+α2 ,
and hence

P{ω : X(ω) ≥ α} ≤ σ2

σ2 + α2
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d) Put X = Y − µ; then X has expectation 0 and variance σ2, and hence
by c)

P{ω : X(ω) ≥ α} ≤ σ2

σ2 + α2
,

which is equivalent to

P{ω : Y (ω) ≥ α+ µ} ≤ σ2

σ2 + α2
.

(This inequality is often called Cantelli’s Inequality.)

Problem 4. a) For Sn to be 0, we need the Xk’s to take the values 1 as
−1 equally many times, and this is impossible if n is odd. If n is even, there
are

(
n
n/2

)
ways in which to choose n/2 positive values among n possible, and

each such combination happens with probability pn/2(1− p)n/2. Hence

P [Sn = 0] =


(
n
n/2

)
pn/2(1− p)n/2 if n is even

0 if n is odd

b) Let
An = {ω : S2n(ω) = 0}

(note the shift from 2n to n). If we can show that
∑∞

n=0 P (An) < ∞, the
Borel-Cantelli Lemma tells us that the probability that Sn is 0 infinitely
many times equals zero. As

P (An) =

(
2n

n

)
pn(1− p)n

by part a), we can use the Ratio Test to check if
∑∞

n=0 P (An) converges:

lim
n→∞

P (An+1)

P (An)
= lim

n→∞

(
2n+2
n+1

)
pn+1(1− p)n+1(

2n
n

)
pn(1− p)n

= lim
n→∞

(2n+ 2)(2n+ 1)

(n+ 1)2
p(1− p) = 4p(1− p)

A little calculus shows that f(p) = p(1−p) has its maximal value 1
4 at p = 1

2 ,
and since by assumption p 6= 1

2 , we have p(1− p) < 1
4 . Thus

lim
n→∞

P (An+1)

P (An)
< 1

which means that the series
∑∞

n=0 P (An) converges, and hence the proba-
bility that Sn is 0 infinitely many times is zero. (If p = 1

2 , one can show
that with probability 1, Sn = 0 infinitely many times.)

3



Comment: It is also possible to use Stirling’s formula n! ∼
√

2πn
(
n
e

)n
to

solve this problem, but one needs to be a little careful with the formulations
as n! ∼

√
2πn

(
n
e

)n
means that

lim
n→∞

n!√
2πn

(
n
e

)n = 1

and not that
lim
n→∞

(
n!−

√
2πn

(n
e

)n)
= 0

(this last limit is in fact infinite). A long as one sticks to ratio or comparison
tests, it is not hard to get this to work.
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