STK-MAT3710/4710: Solution to Mandatory Assignment, Fall 2022

Problem 1. a) As $X_{n}(0)=\sqrt{n}$ for all n, and $X(0)=0$, the sequence does not converge at 0 , and hence it does not converge pointwise.
b) For any $x>0$, we see that $X_{n}(x)=0$ for $n>\frac{1}{x}$, and hence $\lim _{n \rightarrow \infty} X_{n}(x)=$ 0 . This means that convergence only fails on the set $\{0\}$ which has probability 0 , and hence $\left\{X_{n}\right\}$ converges to 0 a.s.
c) For any $\epsilon>0$, we have

$$
\left\{x \in \omega:\left|X_{n}(\omega)\right| \geq \epsilon\right\} \subseteq\left[0, \frac{1}{n}\right]
$$

and thus

$$
P\left(\left\{x \in \omega:\left|X_{n}(\omega)\right| \geq \epsilon\right\}\right) \leq P\left(\left[0, \frac{1}{n}\right]\right)=\frac{1}{n} \rightarrow 0
$$

This shows that the sequence converges to 0 in probability. One may also use b) and the fact that a.s. convergence implies convergence in probability (Proposition 4.5).
d) We have

$$
E\left[\left|X_{n}-0\right|\right]=E\left[X_{n}\right]=\sqrt{n} \cdot \frac{1}{n}=\frac{1}{\sqrt{n}} \rightarrow 0
$$

which shows that the sequence converges to 0 in L^{1}.
e) We have

$$
E\left[\left|X_{n}-0\right|^{2}\right]=E\left[X_{n}^{2}\right]=(\sqrt{n})^{2} \cdot \frac{1}{n}=\frac{n}{n}=1
$$

which shows that the sequence does not converge to 0 in L^{2}.
f) The distribution function of the constant random variable $X=0$ is

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{cases}
$$

The distribution function of X_{n} is

$$
F_{n}(x)= \begin{cases}0 & \text { if } x<0 \\ 1-\frac{1}{n} & \text { if } 0 \leq x<\sqrt{n} \\ 1 & \text { if } x \geq \sqrt{n}\end{cases}
$$

We see that $F_{n}(x) \rightarrow F(x)$ for all x, and hence $\left\{X_{n}\right\}$ converges to $X=0$ in distribution. (To see this, note that for $x<0, F_{n}(x)=F(x)=0$ and hence the convergence is obvious. For $x \geq 0$, we see that when n gets big, $x<\sqrt{n}$, and hence $F_{n}(x)=1-\frac{1}{n}$. Consequently, $\lim _{n \rightarrow \infty} F_{n}(x)=1=F(x)$.)

Comment: Many solves this problem by combining c) and the assertion that convergence in probability implies convergence in distribution. The assertion is correct, but I can't remember that we have covered it.

Problem 2. By Lyapounov's second inequality (Corollary 3.23),

$$
E\left[\left|X-X_{n}\right|^{p}\right]^{1 / p} \leq E\left[\left|X-X_{n}\right|^{q}\right]^{1 / q}
$$

and hence

$$
E\left[\left|X-X_{n}\right|^{p}\right] \leq E\left[\left|X-X_{n}\right|^{q}\right]^{p / q} \rightarrow 0
$$

as $n \rightarrow \infty$.

Problem 3. a) Differentiating, we get

$$
\begin{gathered}
\phi^{\prime}(u)=\frac{2 u \cdot(\alpha+u)^{2}-\left(\sigma^{2}+u^{2}\right) \cdot 2 \cdot(\alpha+u)}{(\alpha+u)^{4}} \\
\quad=\frac{2 u(\alpha+u)-2\left(\sigma^{2}+u^{2}\right)}{(\alpha+u)^{3}}=\frac{2 u \alpha-2 \sigma^{2}}{(\alpha+u)^{3}}
\end{gathered}
$$

which is 0 for $u=\frac{\sigma^{2}}{\alpha}$. As $\phi^{\prime}(u)<0$ when $u<\frac{\sigma^{2}}{\alpha}$, and $\phi^{\prime}(u)>0$ when $u>\frac{\sigma^{2}}{\alpha}$, we see that $u=\frac{\sigma^{2}}{\alpha}$ is the minimum point. The minimum value is

$$
\phi\left(\frac{\sigma^{2}}{\alpha}\right)=\frac{\sigma^{2}+\left(\frac{\sigma^{2}}{\alpha}\right)^{2}}{\left(\alpha+\frac{\sigma^{2}}{\alpha}\right)^{2}}=\frac{\frac{\sigma^{2}}{\alpha^{2}}\left(\alpha^{2}+\sigma^{2}\right)}{\frac{1}{\alpha^{2}}\left(\alpha^{2}+\sigma^{2}\right)^{2}}=\frac{\sigma^{2}}{\sigma^{2}+\alpha^{2}}
$$

b) Note that if $X(\omega)<\alpha$, then the left hand side of the inequality is zero while the right hand side is nonnegative, so the inequality holds. If, on the other hand, $X(\omega) \geq \alpha$, then $X(\omega)+u \geq \alpha+u>0$, and hence $\frac{(X+u)^{2}}{(\alpha+u)^{2}} \geq 1 \geq \mathbf{1}_{\{X \geq \alpha\}}$.
c) For any $u>0$, we know from b) that

$$
P\{\omega: X(\omega) \geq \alpha\}=E\left[\mathbf{1}_{\{X \geq \alpha\}}\right] \leq E\left[\frac{(X+u)^{2}}{(\alpha+u)^{2}}\right]=\frac{\sigma^{2}+u^{2}}{(\alpha+u)^{2}}
$$

By a), the smallest possible value of the expression on the right is $\frac{\sigma^{2}}{\sigma^{2}+\alpha^{2}}$, and hence

$$
P\{\omega: X(\omega) \geq \alpha\} \leq \frac{\sigma^{2}}{\sigma^{2}+\alpha^{2}}
$$

d) Put $X=Y-\mu$; then X has expectation 0 and variance σ^{2}, and hence by c)

$$
P\{\omega: X(\omega) \geq \alpha\} \leq \frac{\sigma^{2}}{\sigma^{2}+\alpha^{2}}
$$

which is equivalent to

$$
P\{\omega: Y(\omega) \geq \alpha+\mu\} \leq \frac{\sigma^{2}}{\sigma^{2}+\alpha^{2}}
$$

(This inequality is often called Cantelli's Inequality.)
Problem 4. a) For S_{n} to be 0 , we need the X_{k} 's to take the values 1 as -1 equally many times, and this is impossible if n is odd. If n is even, there are $\binom{n}{n / 2}$ ways in which to choose $n / 2$ positive values among n possible, and each such combination happens with probability $p^{n / 2}(1-p)^{n / 2}$. Hence

$$
P\left[S_{n}=0\right]=\left\{\begin{array}{cl}
\binom{n}{n / 2} p^{n / 2}(1-p)^{n / 2} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }
\end{array}\right.
$$

b) Let

$$
A_{n}=\left\{\omega: S_{2 n}(\omega)=0\right\}
$$

(note the shift from $2 n$ to n). If we can show that $\sum_{n=0}^{\infty} P\left(A_{n}\right)<\infty$, the Borel-Cantelli Lemma tells us that the probability that S_{n} is 0 infinitely many times equals zero. As

$$
P\left(A_{n}\right)=\binom{2 n}{n} p^{n}(1-p)^{n}
$$

by part a), we can use the Ratio Test to check if $\sum_{n=0}^{\infty} P\left(A_{n}\right)$ converges:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{P\left(A_{n+1}\right)}{P\left(A_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\binom{2 n+2}{n+1} p^{n+1}(1-p)^{n+1}}{\binom{2 n}{n} p^{n}(1-p)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{(n+1)^{2}} p(1-p)=4 p(1-p)
\end{aligned}
$$

A little calculus shows that $f(p)=p(1-p)$ has its maximal value $\frac{1}{4}$ at $p=\frac{1}{2}$, and since by assumption $p \neq \frac{1}{2}$, we have $p(1-p)<\frac{1}{4}$. Thus

$$
\lim _{n \rightarrow \infty} \frac{P\left(A_{n+1}\right)}{P\left(A_{n}\right)}<1
$$

which means that the series $\sum_{n=0}^{\infty} P\left(A_{n}\right)$ converges, and hence the probability that S_{n} is 0 infinitely many times is zero. (If $p=\frac{1}{2}$, one can show that with probability $1, S_{n}=0$ infinitely many times.)

Comment: It is also possible to use Stirling's formula $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ to solve this problem, but one needs to be a little careful with the formulations as $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ means that

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}=1
$$

and not that

$$
\lim _{n \rightarrow \infty}\left(n!-\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right)=0
$$

(this last limit is in fact infinite). A long as one sticks to ratio or comparison tests, it is not hard to get this to work.

