UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: STK2100 — Machine learning and statistical
methods for prediction and classification

Day of examination: Thursday June 2017.
Examination hours:  09.00-13.00.

This problem set consists of 7 pages.
Appendices: Ingen

Permitted aids: Approved calculator and List of formulas
for STK1100/STK1110 and STK2100

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

In this exercise we will look at a data set for housing prices in suburbs to
Boston. As a response variable we will have

MEDV Median value of housing within an area (in $1000)

There are 11 explanatory variables. It is not important to understand what
these are in the following questions, but a description of these is given below.
All variables, except CHAS (binary) and RAD (categorically with 9 levels)
are numeric.

CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft.

CHAS Charles River dummy variable (= 1 if tract bounds river; 0
otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

PTRATIO Pupil-teacher ratio by town

B 1000(Bk — 0.63)? where Bk is the proportion of blacks by town

(Continued on page 2.)
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LSTAT % lower status of the population
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There are a total of n = 506 areas (observations), but all the analysis below

is based on the division into a training set and a test set.

The division in the training and test sets is done by randomly drawing 253
observations used for training and the remaining for testing. As a reference,
we will use results from a linear regression model. The least square method
gave the following regression table:

Estimate Std.

(Intercept) 38.071527
CRIM —0.140742
ZN 0.047965
CHASI1 5.205026
NOX —16.911410
RM 2.614760
AGE 0.019537
DIS —1.262763
RAD2 4.604395
RAD3 6.099546
RADA4 2.636360
RAD5 4.019631
RAD6 2.250257
RAD7 6.901910
RADS 5.704424
RAD24 7.544125
PTRATIO —0.983504
B 0.007554
LSTAT —0.695442

The log likelihood value for this linear model is -742.34.

OO DNNNDRFE F=RFEDNOOOUJU - OO

e}

rate for the test data based on this model is 25.14.

Error t value
.841521 4.855
.040019 —=3.517
.019805 2.422
.401956 3.713
.702240 —2.966
617887 4.232
.019267 1.014
.294073  —4.294
072367 2.222
.914405 3.186
776669 1.484
781579 2.256
.255377 0.998
.114468 3.264
.151248 2.652
.989127 3.793
.213207 —4.613
.003570 2.116
073822 —9.421

Pr(>|t])
2.20e—06
0.000524
0.016204
0.000256
0.003332
3.33e—05
0.311638
2.57e—05
0.027254
0.001638
0.139187
0.024981
0.319441
0.001262
0.008557
0.000190
6.54e—06
0.035400
< 2e—16

The average error

(a) Why is it advisable to divide into training and test sets randomly in

relation to other strategies?

Given this table, arguments why it may be reasonable to remove AGE

from the model.

(b) Below is a regression table given where AGE is removed.

Estimate Std.

(Intercept) 37.268866
CRIM —0.141442
ZN 0.046455
CHAS1 5.339371
NOX —15.305548
RM 2.719095
DIS —1.359251

(Continued on page 3.)

7.801931
0.040016
.019750
395765
478227
.609295
278268

S O ot = O

Error t value
4.777
—3.535
2.352
3.825
—2.794

Pr(>]t])
3.14e—06
0.000492
0.019493
0.000167
0.005637

4.463 1.26e—05
—4.885 1.92e—-06
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RAD2 4.647958 2.072045 2.243 0.025818
RAD3 6.042215 1.913684 3.157 0.001800
RAD4 2.556993 1.775050 1.441 0.151052
RAD5 4.009193 1.781656 2.250 0.025358
RAD6 2.223959 2.255363 0.986 0.325110
RAD7 6.935950 2.114328 3.280 0.001194
RADS 5.818663 2.148425 2.708 0.007259
RAD24 7.358077 1.980765 3.715 0.000254
PTRATIO —0.955146 0.211378 —4.519 9.86e—-06
B 0.007894 0.003554 2.221 0.027306
LSTAT —0.665377 0.067610 —9.841 < 2e-16

The log likelihood value for this model is -742.90 whereas the average
error rate on the test data based on this model was 24.86.

If you ignore the test data, perform a procedure for model selection
between the two linear regression models. What is the conclusion of
this? Does it seem reasonable compared to what came out on the test
data?

Based on the printout, could you imagine a further simplification of
the model?

An alternative model is GAM. The plots below show the nonlinear
features included in this model. The log likelihood value for this model
is -615.79 while the estimated number of degrees of freedom is 46.12.

Explain how the number of degrees of freedom is calculated in this case.
Use this to compare this model with the previous models. Comment
on the result.

The average error rate for test data based on this model was 15.52. Is
this in accordance with the model comparisons you have made?

(Continued on page 4.)
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S(RM,3.36)

S(CRIM,2.8)
S(NOX,8.28)

-10
0

0
-20
0

0 20 40 60 80 0.4 0.5 0.6 0.7 0.8 4 5 6 7 8

CRIM NOX RM

s(DIS,8.38)
S(LSTAT,5.44)

2 4 6 8 10 0 100 200 300 400 5 10 15 20 25 30 35

DIS B LSTAT

Another alternative model can be obtained using regression trees.
Below is a plot of a regression tree based on 9 terminal nodes (or
leaves).

Discuss why regression trees provide an opportunity to include
interactions between explanatory variables.

Explain why a reasonable likelihood function in this case is

where u; = ¢, if ®; € R,,. On what assumptions is such a likelihood
based on?

How many parameters must be specified to fit a tree with 9 enddenodes?

Compare this model against previous models when the log-likelihood
value (with estimated values for 8 inserted) in this case is -697.49.

(Continued on page 5.)
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LSTAT S 9.755

RM <|6.966 LSTAT 4 19.555

CRIM <|6.80854 NOX 4 0.603
19.73 15.44 17.08 10.30

AGE 4 89.05 RM <[7.437
R,—l:"\" <16.543 sago 3472 4404
2297 2855 '

(e) Alternative methods like Bagging, Random Forest and Boosting gave
the following results (where Error is estimated square error on the test

set):
Method Error
Regresjons tree  17.16
Bagging 11.36
Random Forrest 11.28
Boosting 11.58

Describe short these three methods and comment on the results.
Discuss in particular the improvements in relation to the GAM model.

Problem 2

We will now look at a classification setting. Let Y € {1,...,G} be the
variable of interest and suppose we observe x € RP. We have as usual
data {(y;, i), = 1,...,n} where y; € {1,...,G} while ; € R;. We want to
predict Y based on .

(a) Suppose we want to use the K nearest neighbor method for
classification.

Explain how this method works. What are the strengths and
weaknesses of this method?

(Continued on page 6.)
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(b) Below are 3 plot of the K nearest neighbor method for G = 2 and
K = 1,10 or 100 (but not necessarily in this order). Here the solid
line gives the classification boundary between the two classes while the
dotted line gives the optimal boundary (data here are simulated so that
we know the underlying true model). The colors of the points and areas
indicate class values for observations and classifications, respectively.

Specify which plots that belong to the different K values. What value
of K would you prefer? Give reasons for your answer.

Assume now that we introduce a loss function

X 1 hvis g # y;
L(y,y) =
(v.9) {O ellers.

which says something about how serious we measure errors that are made.

(¢) Show that the optimal predictor in this situation is

}A/(ac) = arg max Pr(Y = g|x).

g

Explain why it therefore is important to estimate f,(x) = E[I(Y =
g)|lx] for ¢ = 1,...,G where I(A) = 1 if the event A is true and 0
otherwise.

(d) Explain how noe can use regression methods for estimating f,(x) and
thus use regression methods to construct classification methods.

(e) Discuss different methods for estimating expected losses in this
classification setting. Take special attention to strengths and
weaknesses with different methods.

(f) Assume now that f,(z) is an estimate of f,(). Show that

E[(fy(x0) — fy(20))?|20]
=(fy(x0) — E[fy(z0)|@0))* + E[(fy(x0) — E[f,(20)|w0])?|o]

Provide an interpretation of the various terms on the right side.

(Continued on page 7.)



Exam in STK2100, Thursday June 2017. Page 7

(g) Now let f,1(z) be an estimate of fy(z) based on a fairly restrictive
method/model while f;o(x) is based on a more flexible approach.
Discuss the different terms in the equation above in this setting.

Problem 3

In Ridge regression we want to minimize with respect to 3

n p 2 p
h(B) = Z <yi —Bo — ZB;’%:;’) + )\ZB?
j=1

i=1 j=1

We will assume the explanatory variables are centered so that > "  x;; =0
for all 7.

a) Explain why is is also reasonable to scale the z;;’s such that
P y J
Lyl =1forall j.

(b) Show that

Hridge  —
0 =

Bm’dge :B _ (XTX + )\I)_lXTy
for a suitable specification of X. Here B = (54, ..., B,).

(c) Assume now all the z’s are uncorrelated so that X7 X = I. Assume
also that the true model is Y; = Gy + Z?:l Bjxi; + €; where €1, ..., &)

are independent with expectation 0 and variance o2.

Derive in this case the expectation vector and the covariance matrix
for Bridge.
Discuss these results in relation to the trade-offs that we usually do in

regression settings.

Hint: Show first that E[Y] = 1 + X3 where 1 is a vector of 1’s and
that X71 = 0.



