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(Version May 2019)

1 Loss functions

(a) For regression, the quadratic loss function is usually used: L(y,9) = (y — 9)%
The optimal predictor based on the input variable x is then Y = E[Y|x].

(b) For classification, the 0-1 loss is usually used: L(y,y) = I(y = ), where I(-) is
the indicator function. The optimal predictor based on the input variable x is
then Y = argmax, Pr(Y = k|x).

2 Multi-variable linear regression
(a) Model:
Yi=PFo+ biza+ -+ Bpript+e51=1,2,...,n;
where x;;’s are supposed known and ¢;’s are independent and N (0, 0%)-distributed.
(b) In matrix form,
Y =XB+¢

where Y = (Y1,...,Y,)" and B = (By,...,3,)T are n- and (p + 1)-dimensional
vectors, respectively, and X = {z;;} (with 2,0 = 1) is an n x (p + 1)-dimensional
matrix.

(¢) The ordinary least squares estimator for 3 is 8 = (XTX)!XTY.
(d) Let B = (BU, e Bp)T. Then the Bj’s are unbiased and normally distributed, with
Var(ﬁj) = o’cj; og COV(Bj, Bl) = o’cj

where ¢;; are the element in position (j,1) of the (p + 1) x (p+ 1) matrix C =
(XTX)~L.

(€) Let ¥; = Bo+ Biwia + -+ Byrix, and set SSE = Y~ (V; — ¥;)%. Then 5% = —S5E_
1

i=

is an unbiased estimator for o, and [n — (p + 1)]5/0? ~ X2 _, ). Moreover S

and ,@ are independent.

(f) Let SE(Bj)Q be the estimator of the variance for Bj and replace o with 5% in the
formula for Var(g;) in point (b). Then (5; — 5;)/SE(5;) ~ tn—(p+1)-



(9)

3

The null hypothesis Hy : f; = 2 = -+ = 8, = 0 can be tested by using the test
statistic

P (SST — SSE)/p
~ SST/(n—p—1)

where SSE = Y7 (y; —9;)? and SST = > (y; —9)?. Under H, F is distributed

as a Snedecor’s F' with p and n — p — 1 degrees of freedom.
The null hypothesis

Hy: By =By =+ =f, =0
can be tested by using the test statistic

_ (SSE, — SSE)/q n,
b= SSE/(n—p—1) Fan—p1

where SSEq = Y"1 | (y—9;)?, with §; computed under Hy, while SSE is computed
for the full model.

The maximum likelihood approach

Assume that Y7, Y5, ..., Y, have density f(yi,y2,...,yn|0), where @ = (01,....,0,) is
a parameter vector (scalar if d = 1). Assume that f(yi, 42, ..., y, | @) satisfies certain
regularity conditions.

(a)

(b)

Given the observed values Y; = vy;, i = 1,...,n, the likelihood function is
L(8) = f(y1,92,---,yn|O) and the log-likelihood function I(8) = log L(8).

The maximum likelihood estimate is the value of 8 that maximizes L(8) or, equiv-
alently, maximizes [(0). If the observed y;’s are substituted with the stochastic
Y;’c, we get the maximum likelihood estimator.

The maximum likelihood estimate 6 = (él, ceey éd) is a solution of the likelihood
equation s;(0) =0, j = 1,...,d, where 5;(0) = (0/06,)[(0) is the score function.
The vector of the score functions is s(8) = (s,(0),. .., sq4(0))T.

The observed information matrix J() is a d x d matrix with the element (4, j)
given by J;;(0) = —%&%5(9).

The expected information matrix (or Fisher’s information matrix) I0)isadxd
matrix with the element (7, j) given by I;;(8) = E[J;;(0)].

For independent and identically distributed observations, I(8) = nI(8), where
I(0) is the expected information of one observation.
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When the likelihood equations (at point (¢)) do not have an explicit solution,
the maximum likelihood estimation can be found by using the Newton-Raphson
method:

et — g | j—l(g(S))S(Q(S))7
by using the Fisher scoring algorithm:

e+t — g(s) + 171(9(8))8(3(8)%
or an appropriate modification of it.

For large number of data, él is normally distributed with mean 6; and variance
equal to the i-the diagonal element of I-1(@). The covariance between 0; and éj
is equal to the element (i, 5) in I"1(@). We can estimate the variance/covariance
by plugging in 6 for 6 in I-1(8) or in J~(8).

Model selection criteria

Degrees of freedom: for linear model, i.e., those for which y = Sy, the number
of degrees of freedom is trace(S) = ). Si.

A

AIC is defined as AIC = —2I(0) + 2|0| where |0 is the degrees of freedom of the
model.

~

BIC is defined as BIC = —2[(0) + log(n)|0].

Some other methods for regression

K-nearest neighbor regression is defined by
A 1
f(xo) = e Z Yi
XZ'ENO
where Ny C {x1,...,X,} contains the K closest points to Xg.

kernel methods (e.g., local regression) are conceptually similar to K-nearest
neighbor regression but the influence of an observation depends on (is weighted
by) its distance from the point of interest,

‘h h

where z; is the observation and z( the point of interest. Typical kernels w(z) are

e Normal, \/LZ? exp{(—22/2)}, support R;
e Rectangular, 1/2, support (—1,1);

3
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e Epanechnikov, 3(1 — 22), support (—1,1);

e Biquadratic, 12(1 — 2?)?, support (—1,1);

e Tricubic, 2(1 — [z[%)?, support (—1,1);
Ridge regression: minimize w.r.t. 3

p 2 p
h(B) =Y (yi —Bo— Zﬁszj) +AY B
j=1 =1

=1

Lasso regression: minimize w.r.t. 3

h(B) = Z (yi = Po— Zﬁj%j) + )\Z 1551
=1

i=1 j=1
Cubic spline: Piecewise polynomials with bases

bO(x) :17 bl(x) =, b?(x) = $27 b3(x) = 112'3,
b3+k(‘r) :(ZE' - Ck)i? k= 17 7K

Tree-based methods: f(z) = XM ¢, [(x € R,,) where R? = R{UR,U---U Ry,
and the regions are defined through sequential splits based on one variable at
time.

Bagging and random forest:
. 1 Ab
fave(®) = 5 > (%)

b=1

where f1(x), f2(x), ..., f2(x) are B different predictors based on ordinary boot-
strapping (bagging) or where the or where only a subset of the explanatory vari-
ables are considered in each tree (random forrest).

Neural networks with a latent layer: f(z) = By + S0, fro(al ).

Classification

K-nearest neighbor classification is defined by

. 1 .
Pr(Y = j[X =x¢) = I Z I(y: = Jj)
x;€ENo

where Ny C {xy,...,X,} contains the K closest points to Xg.



(b) Logistic regression: Y € {0,1} and
ex'P

=1-Pr(Y =0Jx).

(¢) Use of Bayes theorem for classification

T fr () ‘
>y mfi()
(i) LDA: fi(x) = p(zly = k) = N(p, X).
(i) QDA: fio(x) = p(zly = k) = N(pr, Zi).

Pr(Y =k|X =2) =

7 Dimensionality reduction

(a) Principal components: 1° principal component is defined as z; = ¢Tx, where ¢,
is chosen such that var(z;) is as large as possible.

(b) Partial least squares: also uses the response variable to define the transformed
variables.

8 Hierarchical clustering

(a) Decomposition of the total dissimilarity,
K

Sain =3 ¥ S i ¥ S i)

ij k=

k=1 G(i)=k G(i')= 1 G(i)=k G(i')#k

where G(i) indicates the cluster that the i-th observation belongs to, K is the
total number of clusters and d(4,7') = >, d;(x;;, xy;)) is the dissimilarity between
observations ¢ and ¢’. Here z;; denotes the j-th component of the observation i.

(b) Dissimilarity measures between groups:

e single link, min;eq yeed(i,7')
e complete link, max;eq eqd(i, i)

e average link, n—n/ Yoica Qovec Ai,1").



