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1 Loss functions

(a) For regression, the quadratic loss function is usually used: L(y, ŷ) = (y − ŷ)2.

The optimal predictor based on the input variable x is then Ŷ = E[Y |x].

(b) For classification, the 0-1 loss is usually used: L(y, ŷ) = I(y = ŷ), where I(·) is
the indicator function. The optimal predictor based on the input variable x is
then Ŷ = argmaxk Pr(Y = k|x).

2 Multi-variable linear regression

(a) Model:

Yi = β0 + β1xi1 + · · ·+ βpxip + εi ; i = 1, 2, . . . , n ;

where xij’s are supposed known and εi’s are independent andN(0, σ2)-distributed.

(b) In matrix form,

Y = Xβ + ε

where Y = (Y1, . . . , Yn)T and β = (β0, . . . , βp)
T are n- and (p + 1)-dimensional

vectors, respectively, and X = {xij} (with xi0 = 1) is an n× (p+ 1)-dimensional
matrix.

(c) The ordinary least squares estimator for β is β̂ = (XTX)−1XTY.

(d) Let β̂ = (β̂0, . . . , β̂p)
T . Then the β̂j’s are unbiased and normally distributed, with

Var(β̂j) = σ2cjj og Cov(β̂j, β̂l) = σ2cjl

where cjl are the element in position (j, l) of the (p + 1) × (p + 1) matrix C =
(XTX)−1.

(e) Let Ŷi = β̂0 + β̂1xi1 + · · ·+ β̂pxik, and set SSE =
n∑
i=1

(Yi− Ŷi)2. Then S2 = SSE
n−(p+1)

is an unbiased estimator for σ2, and [n− (p+ 1)]S2/σ2 ∼ χ2
n−(p+1). Moreover S2

and β̂ are independent.

(f) Let SE(β̂j)
2 be the estimator of the variance for β̂j and replace σ2 with S2 in the

formula for Var(β̂j) in point (b). Then (β̂j − βj)/SE(β̂j) ∼ tn−(p+1).
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(g) The null hypothesis H0 : β1 = β2 = · · · = βp = 0 can be tested by using the test
statistic

F =
(SST− SSE)/p

SST/(n− p− 1)

where SSE =
∑n

i=1(yi− ŷi)2 and SST =
∑n

i=1(yi− ȳ)2. Under H0 F is distributed
as a Snedecor’s F with p and n− p− 1 degrees of freedom.

(h) The null hypothesis

H0 : βi1 = βi2 = · · · = βiq = 0

can be tested by using the test statistic

F =
(SSE0 − SSE)/q

SSE/(n− p− 1)

H0∼ Fq,n−p−1

where SSE0 =
∑n

i=1(y− ŷi)2, with ŷi computed under H0, while SSE is computed
for the full model.

3 The maximum likelihood approach

Assume that Y1, Y2, . . . , Yn have density f(y1, y2, . . . , yn |θ), where θ = (θ1, . . . . , θd) is
a parameter vector (scalar if d = 1). Assume that f(y1, y2, . . . , yn |θ) satisfies certain
regularity conditions.

(a) Given the observed values Yi = yi, i = 1, . . . , n, the likelihood function is
L(θ) = f(y1, y2, . . . , yn |θ) and the log-likelihood function l(θ) = logL(θ).

(b) The maximum likelihood estimate is the value of θ that maximizes L(θ) or, equiv-
alently, maximizes l(θ). If the observed yi’s are substituted with the stochastic
Yi’c, we get the maximum likelihood estimator.

(c) The maximum likelihood estimate θ̂ = (θ̂1, . . . . , θ̂d) is a solution of the likelihood
equation sj(θ) = 0, j = 1, . . . , d, where sj(θ) = (∂/∂θj)l(θ) is the score function.
The vector of the score functions is s(θ) = (s1(θ), . . . , sd(θ))T .

(d) The observed information matrix J̄(θ) is a d × d matrix with the element (i, j)
given by J̄ij(θ) = − ∂2

∂θi∂θj
l(θ).

The expected information matrix (or Fisher’s information matrix) Ī(θ) is a d× d
matrix with the element (i, j) given by Īij(θ) = E[J̄ij(θ)].

For independent and identically distributed observations, Ī(θ) = nI(θ), where
I(θ) is the expected information of one observation.
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(e) When the likelihood equations (at point (c)) do not have an explicit solution,
the maximum likelihood estimation can be found by using the Newton-Raphson
method:

θ(s+1) = θ(s) + J̄−1(θ(s))s(θ(s)),

by using the Fisher scoring algorithm:

θ(s+1) = θ(s) + Ī−1(θ(s))s(θ(s)),

or an appropriate modification of it.

(f) For large number of data, θ̂i is normally distributed with mean θi and variance
equal to the i-the diagonal element of Ī−1(θ). The covariance between θ̂i and θ̂j
is equal to the element (i, j) in Ī−1(θ). We can estimate the variance/covariance
by plugging in θ̂ for θ in Ī−1(θ) or in J̄−1(θ).

4 Model selection criteria

(a) Degrees of freedom: for linear model, i.e., those for which ŷ = Sy, the number
of degrees of freedom is trace(S) =

∑
i Sii.

(b) AIC is defined as AIC = −2l(θ̂) + 2|θ| where |θ| is the degrees of freedom of the
model.

(c) BIC is defined as BIC = −2l(θ̂) + log(n)|θ|.

5 Some other methods for regression

(a) K-nearest neighbor regression is defined by

f̂(x0) =
1

K

∑
xi∈N0

yi

where N0 ⊂ {x1, ...,xn} contains the K closest points to x0.

(b) kernel methods (e.g., local regression) are conceptually similar to K-nearest
neighbor regression but the influence of an observation depends on (is weighted
by) its distance from the point of interest,

wi =
1

h
w

(
xi − x0
h

)
where xi is the observation and x0 the point of interest. Typical kernels w(z) are

• Normal, 1√
2π

exp{(−z2/2)}, support R;

• Rectangular, 1/2, support (−1, 1);
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• Epanechnikov, 3
4
(1− z2), support (−1, 1);

• Biquadratic, 15
16

(1− z2)2, support (−1, 1);

• Tricubic, 70
81

(1− |z|3)3, support (−1, 1);

(c) Ridge regression: minimize w.r.t. β

h(β) =
n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j

(d) Lasso regression: minimize w.r.t. β

h(β) =
n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj|

(e) Cubic spline: Piecewise polynomials with bases

b0(x) =1, b1(x) = x, b2(x) = x2, b3(x) = x3,

b3+k(x) =(x− ck)3+, k = 1, ..., K

(f) Tree-based methods: f(x) =
∑M

m=1 cmI(x ∈ Rm) where Rp = R1∪R2∪· · ·∪RM

and the regions are defined through sequential splits based on one variable at
time.

(g) Bagging and random forest:

f̂avg(x) =
1

B

B∑
b=1

f̂ b(x)

where f̂ 1(x), f̂ 2(x), ..., f̂B(x) are B different predictors based on ordinary boot-
strapping (bagging) or where the or where only a subset of the explanatory vari-
ables are considered in each tree (random forrest).

(h) Neural networks with a latent layer: f(x) = β0 +
∑M

m=1 βkσ(αTmx).

6 Classification

(a) K-nearest neighbor classification is defined by

Pr(Y = j|X = x0) =
1

K

∑
xi∈N0

I(yi = j)

where N0 ⊂ {x1, ...,xn} contains the K closest points to x0.
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(b) Logistic regression: Y ∈ {0, 1} and

Pr(Y = 1|x) =
ex

Tβ

1 + exTβ
= 1− Pr(Y = 0|x).

(c) Use of Bayes theorem for classification

Pr(Y = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

.

(i) LDA: fk(x) = p(x|y = k) = N(µk,Σ).

(ii) QDA: fk(x) = p(x|y = k) = N(µk,Σk).

7 Dimensionality reduction

(a) Principal components: 1st principal component is defined as z1 = φT1 x, where φ1

is chosen such that var(z1) is as large as possible.

(b) Partial least squares: also uses the response variable to define the transformed
variables.

8 Hierarchical clustering

(a) Decomposition of the total dissimilarity,

∑
ij

d(i, i′) =
K∑
k=1

∑
G(i)=k

∑
G(i′)=k

d(i, i′) +
K∑
k=1

∑
G(i)=k

∑
G(i′)6=k

d(i, i′)

where G(i) indicates the cluster that the i-th observation belongs to, K is the
total number of clusters and d(i, i′) =

∑
i dj(xij, xi′j)) is the dissimilarity between

observations i and i′. Here xij denotes the j-th component of the observation i.

(b) Dissimilarity measures between groups:

• single link, mini∈G,i′∈G′d(i, i′)

• complete link, maxi∈G,i′∈G′d(i, i′)

• average link, 1
nGnG′

∑
i∈G
∑

i′∈G′ d(i, i′).
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