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## 'data.frame': 327 obs. of 3 variables:
## $ bmi : num 30.6 30.2 24.7 34.4 21.4 ...
## $ pbfm : num 38.8 45.5 34.8 45.7 31.1 ...
## $ msbp_missing: int 0 0 0 0 0 0 0 0 0 0 ...

summary(bodyfat)

## bmi pbfm msbp_missing
## Min. :14.60 Min. :11.23 Min. :0.000000
## 1st Qu.:25.28 1st Qu.:37.83 1st Qu.:0.000000
## Median :30.10 Median :42.83 Median :0.000000
## Mean :30.94 Mean :42.20 Mean :0.003058
## 3rd Qu.:35.87 3rd Qu.:47.49 3rd Qu.:0.000000
## Max. :56.80 Max. :58.56 Max. :1.000000

a) Simple linear model

Before building the first model, we simply plot the data in a scatter plot. The plot shows a pattern
of positive correlation between bmi and pbfm, where higher bmi values correspond to higher pbfm

values, and the relationship is somewhat linear. However, we can notice that the points constitute a
slightly concave shape, particularly in that increases in bmp for higher values do not seem to lead to
as large increases in pbfm as for smaller values.

fig1 <- bodyfat %>%

ggplot() +

aes(x = bmi, y = pbfm) +

geom_point() +

theme_bw()
fig1
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Then, we fit our first model, which is a simple linear model, and examine the results. As could be
expected from the scatter plot, the coefficient for bmi is positive, where the expected increase in
pbfm from one unit increase in bmi is 0.885. Furthermore, the intercept is at a pbfm value of 14.828.
Both of the coefficients are significant at less than 0.1 percent significance level. Note, however,
that the intercept value, is the value of pbfm when bmi is 0 – which will never occur. Thus, the
intercept is the pbfm when bmi is at the hypothetical value of 0.

mod1 <- bodyfat %>%

lm(pbfm ~ bmi, data = .)
summary(mod1)

##
## Call:
## lm(formula = pbfm ~ bmi, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.5116 -2.0714 0.4083 2.4994 9.1758
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 14.82772 0.82671 17.94 <2e-16 ***
## bmi 0.88481 0.02589 34.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.702 on 325 degrees of freedom
## Multiple R-squared: 0.7823, Adjusted R-squared: 0.7816
## F-statistic: 1168 on 1 and 325 DF, p-value: < 2.2e-16

We can examine graphically how well the simple linear model fits the data, see plot below. Overall,
it is quite good, however, it does not entirely capture the curvature of the points.

bodyfat1 <- bodyfat %>%

mutate(pred = predict(mod1, bodyfat))

fig1_mod1 <- bodyfat1 %>%

ggplot() +

geom_point(aes(x = bmi, y = pbfm)) +

geom_line(aes(x = bmi, y = pred), size = 1, col = "blue") +

theme_bw()
fig1_mod1
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Performing a graphical diagnostic analysis further reveals signs of heteroskedasticity, as shown by
the Ascombe plot (top-left plot) below. Under the assumption of constant variance for the error
term, the Ascombe plot should not show any clear pattern, but it does so in the plot below. Hence,
the assumption about homoskedasticity is violated. The scale-location plot, where the residuals
are standardized, also supports this conclusion. Furthermore, the quantile-quantile plot (top-right
plot) shows signs of a non-linear distribution of the residuals, especially in lower-left tail. Under the
assumption of normally distributed residuals, the theoretical quantiles (shown on the x-axis) should
equal the standardized residuals (shown on the y-axis), which is not entirely satisfied in the Q-Q
plot below. When inspecting the Cook’s distance plot, there does not seem to be any observations
that are particularly influential, as the Cook’s distance values on the y-axis are well below 0.5.

par(mfrow = c(2, 2))
plot(mod1, which = 1:4, sub.caption = "")
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b) Logarithmic transformation and quadratic terms

Both a logarithmic and quadratic transformation could improve the model as it would allow for a
non-linear relationship between bmi and pbfm (while still preserving the linear model) and thus
capture the curvature we can observe in the scatter plot. Logarithmic transformations are often
used with intrinsically positive values, which is the case for bmi, and according to Azzalini and
Scarpa (2012) often tend to correct heteroskedasticity. Furthermore, it would be relevant to consider
the theoretical relationship between bmi and pbfm: we assume higher values of bmi to correspond
to higher values of pbfm. While a logarithmic transformation would capture that relationship, a
polynomial of degree 2 would eventually lead to the model predicting decreasing values of pfmb as
bmi increases. Hence, a logistic transformation of bmi might be more appropriate than including a
quadratic term. We will now build both models and report the results, including diagnostics plots.

Logarithmic explanatory variable

The results of the model with a logarithmic transformation of bmi is shown below. We also plot
the model against the true values, to allow us to examine the fit graphically. From the plot we can
notice that there is an improvement compared to the simple linear model, but the model seems to
slightly overestimate the pbfm value for the highest values of bmi, and perhaps also for the lower
values. Regarding the estimated coefficients, we see that a 1 percent increase in bmi results in an
increase of about 28.8/100 = 0.288 in pbfm with this model. As we would never observe a bmi

value of 0, the intercept of -55.7 (which is not a possible value for pbfm) is again only a hypothetical
value. Finally, both coefficients are diffent from zero at a significance level of less than 0.1 percent.

mod2 <- bodyfat %>%

lm(pbfm ~ log(bmi), data = .)
summary(mod2)

##
## Call:
## lm(formula = pbfm ~ log(bmi), data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.2548 -2.0453 0.1026 2.1238 8.6029
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)

6



## (Intercept) -55.7327 2.3337 -23.88 <2e-16 ***
## log(bmi) 28.8031 0.6845 42.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.125 on 325 degrees of freedom
## Multiple R-squared: 0.8449, Adjusted R-squared: 0.8444
## F-statistic: 1771 on 1 and 325 DF, p-value: < 2.2e-16

bodyfat2 <- bodyfat %>%

mutate(pred = predict(mod2, bodyfat))

fig1_mod2 <- bodyfat2 %>%

ggplot() +

geom_point(aes(x = bmi, y = pbfm)) +

geom_line(aes(x = bmi, y = pred), size = 1, col = "blue") +

theme_bw()
fig1_mod2
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When examining the diagnostics plot below, there seems to be an improvement in normality
assumption of the residuals (the Q–Q plot). However, although slightly improved compared to
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the simple linear model, there are still signs of heteroskedasticity in Ascombe plot. Hence, the
logarithmic transformation of bmi has not solved the problem of heteroskedasticity.

par(mfrow = c(2, 2))
plot(mod2, which = 1:4, sub.caption = "")
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Quadratic terms

We now turn to expanding the simple linear model with a quadratic term, and the regression results
and corresponding model plot are both shown below. First, we can notice that the coefficents of
both bmi and bmiˆ2 are significant, as is the coefficient of the intercept. From the plot we can
observer that, again, there seems to be an improvement in the fit compared to the simple linear
model. Compared to the logarithmic model, the quadratic model also seems to perform better in
predicting especially high values of pbfm. However, as we expected, we can notice how the curve
starts to turn downwards after bmi values of around 50, predicting slightly decreasing pbfm values
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as bmi increases – which theoretically would not make sense. (This effect is due to the coefficient of
the quadratic term being negative.)

mod3 <- bodyfat %>%

lm(pbfm ~ bmi + I(bmi^2), data = .)
summary(mod3)

##
## Call:
## lm(formula = pbfm ~ bmi + I(bmi^2), data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.3403 -1.9246 0.1433 1.8665 8.3780
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.17790 2.16977 -5.152 0.000000449 ***
## bmi 2.53223 0.13229 19.142 < 2e-16 ***
## I(bmi^2) -0.02448 0.00194 -12.617 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.036 on 324 degrees of freedom
## Multiple R-squared: 0.854, Adjusted R-squared: 0.8531
## F-statistic: 947.8 on 2 and 324 DF, p-value: < 2.2e-16

bodyfat3 <- bodyfat %>%

mutate(pred = predict(mod3, bodyfat))

fig1_mod3 <- bodyfat3 %>%

ggplot() +

geom_point(aes(x = bmi, y = pbfm)) +

geom_line(aes(x = bmi, y = pred), size = 1, col = "blue") +

theme_bw()
fig1_mod3
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Examining the diagnostics plots below, there seems to be a further reduction in heteroskedasticity
with this model, compared to the logarithmic model. Although there might still be reason to be
concerned about heteroskedasticity, its presence is less severe than in the previous models. The
Q–Q plot is also more satisfying compared to the simple linear model. Finally, we can notice that
some observations are slightly more influential, but the Cook’s distance is still well below 0.5 for all
observations.

par(mfrow = c(2, 2))
plot(mod3, which = 1:4, sub.caption = "")
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Final note

The choice between a logarithmic transformation and the inclusion of a quadratic term also depends
on the range of bmi you want to apply the model on. In the data sample we have here, the values
for bmi range from 15 to 57. In this range, a quadratic term appears to fit the observed data slightly
better than a logarithmic transformation. However, for bmi values outside this range – especially for
particularly high values – predicting pbfm with a quadratic model would not give sensible results
(decreasing pbfm!). However, one should anyway be careful in applying the model to predict pbfm

for bmi data far outside the range used to fit the model, as we do not know if the relationship
between pbfm and bmi is the same then. Hence, given that this model is built to predict pbfm for
someone with bmi between around 15 and 60, a quadratic term might be preferable to a logarithmic
transformation.
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c) Cross-validation

To examine if a polynomial of a higher order might be beneficial, we apply cross-validation using
the train function in the caret pacakge. In particular, we set the method to be leave-one-out
cross-validation (LOOCV), which implies that n–1 observations are used to fit the model, while the
remaining observation is used for testing (Azzalini & Scarpa, 2012). From the plot below, we see
that a polynomial of degree 4 appears to yield the lowest mean squared error (MSE).

train_control <- trainControl(method = "LOOCV")

MSE <- numeric(10)
for (p in 1:10){

formula <- bquote(pbfm ~ poly(bmi, .(p)))
model <- train(as.formula(formula),

data = bodyfat,
method = "lm",
trControl = train_control)

MSE[p] <- model$results$RMSE^2
}

min_cv <- which(MSE == min(MSE))
min_cv

## [1] 4

fig_cv <- ggplot() +

aes(x = 1:10, y = MSE) +

geom_line(size = 1) +

geom_point(aes(x = min_cv, y = MSE[min_cv]), size = 3) +

scale_x_continuous(breaks = c(1:length(MSE))) +

theme_bw() +

labs(x = "Model complexity (order of polynomial)",
y = "Error (MSE)")

fig_cv
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We can also report the related model, which is done below. As before, we also include a plot of the
model to be able to examine its fit graphically, in addition to the diagnostics plots.

mod4 <- bodyfat %>%

lm(pbfm ~ poly(bmi, min_cv), data = .)
summary(mod4)

##
## Call:
## lm(formula = pbfm ~ poly(bmi, min_cv), data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9670 -1.8763 0.0443 1.8563 7.8093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.200 0.163 258.956 < 2e-16 ***
## poly(bmi, min_cv)1 126.529 2.947 42.937 < 2e-16 ***
## poly(bmi, min_cv)2 -38.312 2.947 -13.001 < 2e-16 ***
## poly(bmi, min_cv)3 12.181 2.947 4.134 0.0000456 ***
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## poly(bmi, min_cv)4 -6.536 2.947 -2.218 0.0273 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.947 on 322 degrees of freedom
## Multiple R-squared: 0.8634, Adjusted R-squared: 0.8617
## F-statistic: 508.7 on 4 and 322 DF, p-value: < 2.2e-16

bodyfat4 <- bodyfat %>%

mutate(pred = predict(mod4, bodyfat))

fig1_mod4 <- bodyfat4 %>%

ggplot() +

geom_point(aes(x = bmi, y = pbfm)) +

geom_line(aes(x = bmi, y = pred), size = 1, col = "blue") +

theme_bw()
fig1_mod4
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Diagnostics plot:

par(mfrow = c(2, 2))
plot(mod4, which = 1:4, sub.caption = "")
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d) Information criteria

Another technique for model selection is to use an information criterion (IC) which applies a penalty
for increasing the number of parameters. Here, both Akaike information criterion (AIC), which
uses the penalty 2p, and Bayesian information criterion (BIC), which uses the penalty p log(n), is
employed, and the results are plotted below. We see that model selection by AIC yields the same
result as LOOCV, with AIC being at its lowest with degree 4 of the polynomial. The BIC, on the
other hand, penalises model complexity more than both AIC and LOOCV, reflected in BIC being
the lowest for the model with degree 3 of the polynomial. According to Hastie et al. (2009), for
very large sample sizes AIC tends to choose too complex models, while for smaller sample sizes,
BIC tends to choose too simple models due to its penalty on complexity. Therefore, with N = 327
observations in our dataset, I would choose the model where IC is lowest based on AIC, that is, the
model with degree 4 of the polynomial.
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AIC_BIC <- data.frame(p = 1:10,
AIC = numeric(10),
BIC = numeric(10))

for (p in AIC_BIC$p){
formula <- bquote(pbfm ~ poly(bmi, .(p)))
AIC_BIC$AIC[p] <- AIC(lm(as.formula(formula), data = bodyfat))
AIC_BIC$BIC[p] <- BIC(lm(as.formula(formula), data = bodyfat))

}

min_AIC <- which(AIC_BIC$AIC == min(AIC_BIC$AIC))
min_AIC

## [1] 4

min_BIC <- which(AIC_BIC$BIC == min(AIC_BIC$BIC))
min_BIC

## [1] 3

fig_AIC_BIC <- AIC_BIC %>%

gather(`Information criterion`, Value, AIC, BIC) %>%

ggplot() +

aes(x = p, y = Value, col = `Information criterion`) +

geom_line(size = 1) +

geom_point(aes(x = min_AIC, y = AIC_BIC$AIC[min_AIC]), col = "blue", size = 3) +

geom_point(aes(x = min_BIC, y = AIC_BIC$BIC[min_BIC]), col = "red", size = 3) +

scale_x_continuous(breaks = c(1:10)) +

scale_colour_manual(values = c("blue", "red")) +

theme_bw() +

labs(x = "Model complexity (order of polynomial)",
y = "AIC and BIC criterion") +

theme(legend.position = "bottom")
fig_AIC_BIC
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Problem 2

In Problem 2, we consider a large population-based case–control study on Oral cancer conducted in
the US (Day et al., 1993), from which the data related to the African American population (194
cases, ccstatus = 1, and 203 controls, ccstatus = 0) have been selected. The aim of the study was
to evaluate the risk of Oral cancer based on the variables drinks (number of 1oz ethanol-equivalent
drinks consumed per week), sex, age and cigs (number of cigarettes smoked per day). We begin by
downloading and inspecting the data:

oral_ca <- read.csv("oral_ca/oral_ca.csv")
str(oral_ca)

## 'data.frame': 397 obs. of 7 variables:
## $ drinks : num 11.1 0 48 13 76 ...
## $ ccstatus: int 1 1 1 1 1 1 1 1 1 1 ...
## $ cigs : int 20 6 20 10 40 40 40 20 30 20 ...
## $ age : int 52 54 47 39 47 47 37 61 59 36 ...
## $ sex : int 0 0 0 0 1 0 0 0 0 0 ...
## $ M_drinks: int 0 0 0 0 0 0 0 0 0 0 ...
## $ M_cigs : int 0 0 0 0 0 0 0 0 0 0 ...

summary(oral_ca)

## drinks ccstatus cigs age
## Min. : 0.00 Min. :0.0000 Min. : 0.00 Min. :21
## 1st Qu.: 1.50 1st Qu.:0.0000 1st Qu.: 3.00 1st Qu.:48
## Median : 15.75 Median :0.0000 Median :20.00 Median :56
## Mean : 31.40 Mean :0.4887 Mean :16.36 Mean :56
## 3rd Qu.: 48.00 3rd Qu.:1.0000 3rd Qu.:20.00 3rd Qu.:65
## Max. :140.00 Max. :1.0000 Max. :60.00 Max. :80
## sex M_drinks M_cigs
## Min. :0.0000 Min. :0.000000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.000000 1st Qu.:0.00000
## Median :0.0000 Median :0.000000 Median :0.00000
## Mean :0.2771 Mean :0.005038 Mean :0.01511
## 3rd Qu.:1.0000 3rd Qu.:0.000000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.000000 Max. :1.00000
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a) Frequencies and probabilities

We begin by looking at the correlation between ccstatus and cigs as a dichotomized variable. The
table below shows the observed frequencies of cases and controls for observations in the non-smokers
and smokers groups. We observe that the number of smokers in the dataset is about three times
larger than the number of non-smokers, and also that the majority of smokers are in the case group,
while the majority of non-smokers are in the control group.

oral_ca <- oral_ca %>%

mutate(cigs.d = ifelse(cigs > 0, "Smokers", "Non-smokers"),
ccstatus.d = ifelse(ccstatus == 1, "Case", "Control"))

table(oral_ca$cigs.d, oral_ca$ccstatus.d)

##
## Case Control
## Non-smokers 22 69
## Smokers 172 134

We can also compute the estimated probabilities, with their standard errors, of being a case for
each of the groups (“Smokers” and “Non-smokers”). The results are shown below. We also include
the probability for being a case for the observations in the sample as a whole as this value will be
used in pt. (b). The estimated probability of a smoker being a case is approximately 0.562, with a
standard error of 0.028. For a non-smoker the corresponding numbers are 0.242 and 0.045. (For the
whole sample the estimated probability is 0.489 with a standard error of 0.025.)

probs <- oral_ca %>%

summarise(pi.smoke.hat =
sum(ccstatus[cigs.d == "Smokers"]) / sum(cigs.d == "Smokers"),

pi.nonsmoke.hat =
sum(ccstatus[cigs.d == "Non-smokers"]) / sum(cigs.d == "Non-smokers"),

pi.common.hat =
sum(ccstatus) / n(),

se.pi.smoke.hat =
sqrt(pi.smoke.hat * (1 - pi.smoke.hat) / sum(cigs.d == "Smokers")),

se.pi.nonsmoke.hat =
sqrt(pi.nonsmoke.hat * (1 - pi.nonsmoke.hat) / sum(cigs.d == "Non-smokers")),

se.pi.common.hat =
sqrt(pi.common.hat * (1 - pi.common.hat) / n()))
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t(probs)

## [,1]
## pi.smoke.hat 0.56209150
## pi.nonsmoke.hat 0.24175824
## pi.common.hat 0.48866499
## se.pi.smoke.hat 0.02836185
## se.pi.nonsmoke.hat 0.04488216
## se.pi.common.hat 0.02508783

b) Test for equal probabilities

Using the estimated probabilities and their standard errors from pt. (a), we compute the likelihood
ratio test statistics, w. This test statistics is 2(log(L1)–log(L0)) where L0 is the maximized log-
likelihood function under the null hypothesis that the probabilities are equal (i.e. does not depend
upon being a smoker or not) and L1 the maximized log-likelihood function without that constraint
(Azzalini & Scarpa, 2012). We also compute the p-value of w based on the chi-squared distribution
with 1 df. As the p-value is close to zero, we reject the null hypothesis of equal probability.

res <- oral_ca %>%

summarise(llik_pi.smoke.hat_pi.nonsmoke.hat =
sum(dbinom(ccstatus[cigs.d == "Smokers"], 1, probs$pi.smoke.hat, log = TRUE)) +

sum(dbinom(ccstatus[cigs.d == "Non-smokers"], 1, probs$pi.nonsmoke.hat, log = TRUE)),
llik_pi.common.hat = sum(dbinom(ccstatus, 1, probs$pi.common.hat, log = TRUE)),
w = 2 * (llik_pi.smoke.hat_pi.nonsmoke.hat - llik_pi.common.hat),
p.value = 1 - pchisq(w, df = 1))

t(res)

## [,1]
## llik_pi.smoke.hat_pi.nonsmoke.hat -260.06939029403202
## llik_pi.common.hat -275.07740682904608
## w 30.01603307002813
## p.value 0.00000004284888
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c) Linear logistic model with cigarettes (cigs) as dichotomised variable

To fit a linear logistics model, we use the glm function, and the results are shown below. As the
coefficient of cigs is positive and significant at less than 0.1 percent significance level, being a smoker
seems to increase the risk of oral cancer. Specifically, the increase in log-odds from smoking is
approximately 1.39. This corresponds to an increase in odds by the exponential of the log-odds,
which is approximately 4.028. We can also see this by the calculation below. Furthermore, the
intercept coefficient is the log-odds of cancer for the reference group of not being a smoker.

mod.c <- glm(ccstatus ~ cigs.d,
family = "binomial",
data = oral_ca)

summary(mod.c)

##
## Call:
## glm(formula = ccstatus ~ cigs.d, family = "binomial", data = oral_ca)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.285 -1.285 -0.744 1.073 1.685
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.1431 0.2448 -4.669 0.000003033 ***
## cigs.dSmokers 1.3927 0.2706 5.147 0.000000265 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 550.15 on 396 degrees of freedom
## Residual deviance: 520.14 on 395 degrees of freedom
## AIC: 524.14
##
## Number of Fisher Scoring iterations: 4
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beta <- mod.c$coefficients

pi_values <- data.frame(pi_smoke = exp(beta[1] + beta[2]) / (1 + exp(beta[1] + beta[2])),
pi_nonsmoke = exp(beta[1]) / (1 + exp(beta[1])))

log_odds <- pi_values %>%

mutate(odds_smoke = pi_smoke / (1 - pi_smoke),
odds_nonsmoke = pi_nonsmoke / (1 - pi_nonsmoke),
log_odds_smoke = log(odds_smoke),
log_odds_nonsmoke = log(odds_nonsmoke),
diff_log_odds = log_odds_smoke - log_odds_nonsmoke,
diff_odds = exp(diff_log_odds))

t(log_odds)

## [,1]
## pi_smoke 0.5620915
## pi_nonsmoke 0.2417582
## odds_smoke 1.2835821
## odds_nonsmoke 0.3188406
## log_odds_smoke 0.2496547
## log_odds_nonsmoke -1.1430641
## diff_log_odds 1.3927187
## diff_odds 4.0257802

d) Linear logistic model with cigarettes (cigs) as a continuous variable

Instead of using a dichotomized variable for cigs, we now use the continuous variable in the model.
The results are shown below. The coefficient of cigs of approximately 0.054 is now the expected
change (increase) in log-odds from one additional cigarette smoked per day. Although they are both
related to the odds for non-smokers, the coefficient of the intercept changes with respect to pt. (c)
because cigs is now a continuous variable.

mod.d <- glm(ccstatus ~ cigs,
family = "binomial",
data = oral_ca)

summary(mod.d)
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##
## Call:
## glm(formula = ccstatus ~ cigs, family = "binomial", data = oral_ca)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1923 -1.0237 -0.8228 1.1088 1.5796
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.909057 0.171766 -5.292 0.000000120714 ***
## cigs 0.053624 0.008614 6.225 0.000000000481 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 550.15 on 396 degrees of freedom
## Residual deviance: 504.39 on 395 degrees of freedom
## AIC: 508.39
##
## Number of Fisher Scoring iterations: 4

e) Linear logistic model including all the explanatory variables

We now include the other three variables (drinks, age and sex) in the model as well, and the results
are shown below. Of the three variables, drinks and sex are significant at 5 percent significance
level or less, and both have a positive correlation with the risk of oral cancer. The coefficient of the
variable age is also positive, but it is not significantly different from zero. Furthermore, we observe
that the increase in the log-odds for one more cigarette smoked per day now is 0.035, which is a
lower value than in pt. (d) where it was 0.054. The reason for this is that in pt. (d), the model
suffered from omitted variable bias. That is, one or more relevant variables correlating both with
ccstatus and with cigs were left out of the model, resulting in the coefficient of cigs being estimated
to be too high. Finally, we can notice that AIC is 453.8.
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mod.e <- glm(ccstatus ~ cigs + drinks + age + sex,
family = "binomial",
data = oral_ca)

summary(mod.e)

##
## Call:
## glm(formula = ccstatus ~ cigs + drinks + age + sex, family = "binomial",
## data = oral_ca)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.7185 -0.8589 -0.5832 0.9644 1.9776
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.966071 0.620756 -3.167 0.00154 **
## cigs 0.035480 0.009571 3.707 0.00021 ***
## drinks 0.029623 0.004643 6.380 0.000000000177 ***
## age 0.006529 0.009960 0.656 0.51213
## sex 0.594499 0.272752 2.180 0.02928 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 550.15 on 396 degrees of freedom
## Residual deviance: 443.84 on 392 degrees of freedom
## AIC: 453.84
##
## Number of Fisher Scoring iterations: 5

f) Exclude age from the model

The coefficient of age has a positive value, but it is not statistically significant at 5 percent level,
thus we do not reject the null hypothesis that the coefficient is zero. Hence, it does not seem to be
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the case that older people risk more, controlling for the other variables (cigs, drinks and sex). We
now fit a new model excluding age, and the results are shown below. Specifically, the coefficients of
cigs, drinks and sex are more or less the same as in pt. (e), and AIC is slightly improved to 452.3.
As the model without age is simpler than the model including age, and also improves AIC, I would
prefer this simpler model.

mod.f <- glm(ccstatus ~ cigs + drinks + sex,
family = "binomial",
data = oral_ca)

summary(mod.f)

##
## Call:
## glm(formula = ccstatus ~ cigs + drinks + sex, family = "binomial",
## data = oral_ca)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6943 -0.8596 -0.6084 0.9607 1.8857
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.592919 0.238787 -6.671 0.0000000000254 ***
## cigs 0.035536 0.009565 3.715 0.000203 ***
## drinks 0.029498 0.004638 6.360 0.0000000002012 ***
## sex 0.582183 0.271756 2.142 0.032169 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 550.15 on 396 degrees of freedom
## Residual deviance: 444.27 on 393 degrees of freedom
## AIC: 452.27
##
## Number of Fisher Scoring iterations: 5
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g) Quadratic term for drinks

We still exclude age and instead include a polynomial of degree 2 to model the effect of drinks,
where the results are shown below. The coefficients of all variables are statistically significant at
a 5 percent significance level, and AIC is further improved to 447.6, compared to 452.3. Hence,
including a polynomial of degree 2 appears to improve the model.

mod.g <- glm(ccstatus ~ cigs + drinks + I(drinks^2) + sex,
family = "binomial",
data = oral_ca)

summary(mod.g)

##
## Call:
## glm(formula = ccstatus ~ cigs + drinks + I(drinks^2) + sex, family = "binomial",
## data = oral_ca)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2192 -0.8379 -0.5405 0.8756 1.9980
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.84989123 0.26670134 -6.936 0.00000000000403 ***
## cigs 0.03301049 0.00964170 3.424 0.000618 ***
## drinks 0.05361658 0.01051587 5.099 0.00000034210964 ***
## I(drinks^2) -0.00022953 0.00008419 -2.726 0.006405 **
## sex 0.72564421 0.28540905 2.542 0.011007 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 550.15 on 396 degrees of freedom
## Residual deviance: 437.62 on 392 degrees of freedom
## AIC: 447.62
##
## Number of Fisher Scoring iterations: 4
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h) Quadratic term for cigarettes (cigs)

If we instead include a quadratic term for cigs, we get the results shown below. It appears that
including a quadratic term for cigs does not improve the model as the coefficient of cigsˆ2 is not
significant and AIC is increased to 453.6.

mod.h <- glm(ccstatus ~ cigs + I(cigs^2) + drinks + sex,
family = "binomial",
data = oral_ca)

summary(mod.h)

##
## Call:
## glm(formula = ccstatus ~ cigs + I(cigs^2) + drinks + sex, family = "binomial",
## data = oral_ca)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6870 -0.8764 -0.5808 0.9695 1.9303
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.6943120 0.2697349 -6.281 0.000000000336 ***
## cigs 0.0541177 0.0238775 2.266 0.0234 *
## I(cigs^2) -0.0004485 0.0005225 -0.858 0.3907
## drinks 0.0289791 0.0046347 6.253 0.000000000404 ***
## sex 0.6019008 0.2742844 2.194 0.0282 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 550.15 on 396 degrees of freedom
## Residual deviance: 443.55 on 392 degrees of freedom
## AIC: 453.55
##
## Number of Fisher Scoring iterations: 5
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i) Cubic terms

Finally, we can build models including a cubic term for drinks and cigs, respectively, to see if that
improves the fit. However, as the results below show, neither models appear to be an improvement
compared to the simpler ones, as the coefficients of the second and third order polynomials are not
statistically significant in any of the models. Also, AIC is worse in both models compared to the
AIC of the model in pt. (g). Hence, the best model seems to be the one with quadratic effect for
drinks.

Cubic term for drinks

mod.i1 <- glm(ccstatus ~ cigs + drinks + I(drinks^2) + I(drinks^3) + sex,
family = "binomial",
data = oral_ca)

summary(mod.i1)

##
## Call:
## glm(formula = ccstatus ~ cigs + drinks + I(drinks^2) + I(drinks^3) +
## sex, family = "binomial", data = oral_ca)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1993 -0.8382 -0.5367 0.8703 2.0045
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.865004213 0.287615254 -6.484 0.0000000000891 ***
## cigs 0.032940949 0.009651358 3.413 0.000642 ***
## drinks 0.056358094 0.021973596 2.565 0.010323 *
## I(drinks^2) -0.000296010 0.000474763 -0.623 0.532963
## I(drinks^3) 0.000000354 0.000002488 0.142 0.886856
## sex 0.732025366 0.289282623 2.530 0.011390 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
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##
## Null deviance: 550.15 on 396 degrees of freedom
## Residual deviance: 437.60 on 391 degrees of freedom
## AIC: 449.6
##
## Number of Fisher Scoring iterations: 4

Cubic term for cigs

mod.i2 <- glm(ccstatus ~ cigs + I(cigs^2) + I(cigs^3) + drinks + sex,
family = "binomial",
data = oral_ca)

summary(mod.i2)

##
## Call:
## glm(formula = ccstatus ~ cigs + I(cigs^2) + I(cigs^3) + drinks +
## sex, family = "binomial", data = oral_ca)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6567 -0.8871 -0.5658 0.9740 1.9551
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.75117731 0.28631554 -6.116 0.000000000958 ***
## cigs 0.07878751 0.04578855 1.721 0.0853 .
## I(cigs^2) -0.00190087 0.00236132 -0.805 0.4208
## I(cigs^3) 0.00002011 0.00003215 0.626 0.5316
## drinks 0.02896095 0.00464273 6.238 0.000000000443 ***
## sex 0.61435091 0.27523429 2.232 0.0256 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 550.15 on 396 degrees of freedom
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k) Separate training and test set

Finally, we examine which model is the best for prediction by splitting the data into a training set and

a test set, where we use 2/3 of the data for training and 1/3 for testing. To ensure that results are 

replicable, we use set.seed. However, it should be noticed that the computed errors of the training 

and test data for the different models will depend on the split into training and test. If the data were 

split using a different set.seed value, the results may change.



Output

                                                                                                            formula training error test error

c                                                                                           ccstatus ~ cigs_      0.4090909  

0.3609023

d                                                                                            ccstatus ~ cigs      0.3446970  0.3308271

e                                                        ccstatus ~ cigs + age + sex + drinks      0.2424242  0.2781955

f                                                                   ccstatus ~ cigs + sex + drinks      0.2651515  0.2781955

g                                           ccstatus ~ cigs + sex + drinks + I(drinks^2)      0.2537879  0.2932331

h                                               ccstatus ~ cigs + sex + drinks + I(cigs^2)      0.2613636  0.2631579

I                    ccstatus ~ cigs + sex + drinks + I(drinks^2) + I(drinks^3)      0.2575758  0.2781955

j                             ccstatus ~ cigs + sex + drinks + I(cigs^2) + I(cigs^3)      0.2613636  0.2932331

The test error is the lowest for the model from task h), so I choose this model as the best. 


