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Problem 1: Golub et al.(1999) data

We start by downloading the data from the provided url:

rm(list=1s())
leukemia <- read.csv("http://web.stanford.edu/~hastie/CASI_files/DATA/leukemia_big.csv")

Since the data are in “bioinformatics” format, we need to transpose the dataset to have the observations in
the rows and the variables in the columns

X <- t(leukemia)

The response variable can be derived from the columns’ names,

y <- ifelse(substr(colnames(leukemia), 2, 2) == 'L', 0, 1)

Finally, the dataset must be split into a training and a test set,

test <- c('ALL.4', 'ALL.8', 'ALL.10', 'ALL.11', 'ALL.13', 'ALL.18', 'AML', 'AML.1',
'"AML.4', 'AML.6', 'AML.8', 'ALL.23', 'ALL.26', 'ALL.29', 'ALL.31', 'ALL.32',
'"ALL.35', 'ALL.39', 'ALL.40', 'ALL.41', 'ALL.42', 'AML.16', 'AML.22', 'AML.24')

test <- sapply(test, function(x, dataset) which(x == rownames(dataset)), dataset = X)

X.train <- X[-test, ]
y.train <- y[-test]
X.test <- X[test, 1]
y.test <- y[test]

a Penalized logistic regression
a.l

The exercise clearly required to use a deterministic cross-validation procedure, for example LOOCV, to choose
among the 10 possible values of A provided in the text,

library(glmnet)

## Loading required package: Matrix

## Loaded glmnet 3.0-2

lambda.seq <- exp(seq(-7,2))
lambda.ridge <- cv.glmnet(x = X.train, y = y.train, nfolds = 48, alpha = O,

family = 'binomial', lambda = lambda.seq, grouped = FALSE)
lambda.lasso <- cv.glmnet(x = X.train, y = y.train, nfolds = 48, alpha = 1,

family = 'binomial', lambda = lambda.seq, grouped = FALSE)



The correct \s are

lambda.ridge$lambda.min

## [1] 0.01831564

for ridge regresison and

lambda.lasso$lambda.min

## [1] 0.01831564
for lasso.

Alternatively, the largest values within 1 standard error distance could have been selected,

lambda.ridge$lambda. 1se

## [1] 2.718282
lambda.lasso$lambda. lse

## [1] 0.04978707

In penalized regression methods like lasso and ridge, the parameter A is the tuning parameter that controls the
model complexity by controlling the amount of penalty to add to the loss function. In particular, it controls
the bias-variance trade-off: a larger value of A leads to a solution closer to the null model (only intercept), so
increases the bias and reduces the variance, while smaller values have the opposite effect (less bias, more
variance), until, in a low dimensional case, A = 0 leads to the same solution of the logistic regression.

Note: tuning A to minimize the cross-validated missclassification error instead of the cross-validated deviance
(i.e., setting type.measure = ’class’ in cv.glmnet) would have lead to slightly different results, obviously
accepted.

a.2

The exercise requires the computation of the missclassification error for both models on the training,

mod.ridge <- glmnet(x = X.train, y = y.train, alpha = 0, family = 'binomial',
lambda = lambda.seq)
mod.lasso <- glmnet(x = X.train, y = y.train, alpha = 1, family = 'binomial',

lambda = lambda.seq)

y.tr.ridge.class <- predict(mod.ridge, s = lambda.ridge$lambda.min, newx = X.train,
type = 'class')

y.tr.lasso.class <- predict(mod.lasso, s = lambda.lasso$lambda.min, newx = X.train,
type = 'class')

c(mean(y.tr.lasso.class != y.train), mean(y.tr.ridge.class != y.train))

# [11 00
and the test set,

y.hat.ridge.class <- predict(mod.ridge, s = lambda.ridge$lambda.min, newx = X.test,
type = 'class')

y.hat.lasso.class <- predict(mod.lasso, s = lambda.lasso$lambda.min, newx = X.test,
type = 'class')

c(mean(y.hat.lasso.class != y.test), mean(y.hat.ridge.class != y.test))

## [1] 0.00000000 0.04166667



The training error is in general smaller than the test error because the model is fitted on those specific
data, so in the case the model does not only capture the systematic part of the process, but also part of the
randomness, we have an eccess of optimism due to overfitting.

a.3

We have chosen leave-one-out cross-validation (LOOCV) because it is the fastest procedure among the

deterministic cross-validation procedures (alternatively, a complete K-fold cross validation could have been

used, but it would have implied to consider all the (?) possible splits). LOOCYV is deterministic because all

observations are in separate folds and there is only one way to assign them (basically, (i?) =1).

Advantages of LOOCV with respect to other cross-validation procedures include no randomness and a lower
bias; disadvantages include heavier computations (a part for special cases) and an higher variance.

b Model assessment
bl

As the lift plot and the missclassification error focus on different aspects of the model, it is not strange that
the former gives the same result for lasso and ridge, while the latter does not. In particular, the lift plot
sorts the observations based on the estimated probability to belong to one or the other class: in this specific
example, observation AML.8 is incorrectly classified by the ridge model as ALL,

predict(mod.ridge, s = lambda.ridge$lambda.min, newx = X.test,
type = 'class') [rownames(X.test)=='AML.8"']
## [1] non

but if we look at the estimated probability,
round(predict(mod.ridge, s = lambda.ridge$lambda.min, newx = X.test, type = 'response'),
2) [rownames (X.test)=="'AML.8']

## [1] 0.49

it is very close to the threshold 0.50. Basically, in the missclassification error this observation makes the
error be 1/24, while it does not harm the lift curve as its probability to be ALL is higher than any of the AML
observations.

b2

That point says that if we choose (with the goal of selecting ALL observations) the 25% of the observations to
which the models assign the highest probability to be ALL, our selection is 3 time better than if we choose
them completely at random.

¢ Pre-selection
cl

The exercise asks to perform a two-sample t-test on the whole dataset for each variable and to select those
with the smallest p-values, i.e., those with the highest difference in mean. The result is

pval <- apply(X, 2, function(x, class) t.test(x[class == 0], x[class == 1])$p.value,
class = y)

selected.all <- order(pval) [1:9]

sort(selected.all)

## [1] 758 1745 1882 2121 3252 4377 4847 6041 6854

Once these variables have been identified, a logistic model can be fitted,



mod.logit.all <- glm(y.train ~ ., data = as.data.frame(X.train[, selected.all]),
family = binomial)
and the misclassification error computed,

y.hat.logit.all <- predict(mod.logit.all, newdata = as.data.frame(X.test[, selected.all]),
type = 'response')
mean(round(y.hat.logit.all) != y.test)

## [1]1 O

The pre-selection step is necessary to fit the logistic model, as the number of variables must be smaller than
the number of observations.

Note: due to complete separation, here one may have experienced some issues with the model convergence.
Nevertheless, the key point was the correct implementation of the procedure, rather than the results themselves
(that were not asked to be commented).

c2

The procedure is wrong because we are using the test data in the training of the model, so the error cannot
be compared to those obtained before for lasso and ridge regression, in which the models are correctly trained
only using the traing set.

c3

Here to correct the procedure means to perform the pre-selection step on the training data only, obtaining

pval <- apply(X.train, 2, function(x, class) t.test(x[class == 0], x[class == 1])$p.value,
class = y.train)

selected.sep <- order(pval) [1:9]

sort(selected.sep)

## [1] 1745 1882 2121 3252 4847 4973 6041 6623 6854

The logistic model is now fitted using vairables selected “fairly”,

mod.logit.sep <- glm(y.train ~ ., data = as.data.frame(X.train[, selected.sep]),
family = binomial)
y.hat.logit.sep <- predict(mod.logit.sep, newdata = as.data.frame(X.test[, selected.sepl),
type = 'response')

and the missclassification error for this procedure,

mean(round(y.hat.logit.sep) != y.test)

## [1] 0.08333333

can be compared to those of lasso and ridge regression found at point a.2.

d Non-hierarchical clustering
d1

Implementing K-means with the required initial centroids,

missclassication.kmeans <- rep(NA, 10)
centers <- list(rbind(X[1,], X[11,]),
rbind(X[1,], X[12,]1),
rbind(X[1,], X[21,1),



rbind(X[1,], X[23,]),
rbind(X[11,], X[12,1),
rbind(X[11,], X[21,]1),
rbind(X[11,], X[23,1),
rbind (X[12,], X[21,1),
rbind (X[12,], X[23,1),
rbind (X[21,], X[23,1))

for (i in 1:10)
{
cluster.kmeans <- kmeans(X, 2, centers = centers[[i]])
table.tmp <- table(y, cluster.kmeans$cluster)
missclassication.kmeans[i] <- min(sum(diag(table.tmp))/sum(table.tmp),
1 - sum(diag(table.tmp))/sum(table.tmp))
}

leads to the following results,

missclassication.kmeans

## [1] 0.33333333 0.29166667 0.01388889 0.27777778 0.34722222 0.01388889
## [7] 0.27777778 0.01388889 0.01388889 0.01388889

Note that the correct solution must contain only values smaller than 0.5: the clustering procedure only
separates the observations in two groups, so the labels have nothing to do with the AML/ALL ones.

The results are so different because K-means is very sensitive to the starting point (initial values of the
centroids): there is no guarantee that the method finds the global minimum, and, in contrast, as clearly
shown here, often stops at a local minimum.

d2

The problem is that we usually do not know the correct number of cluster in advance, and K-means is not
able to find it automatically. Without a previous knowledge of the data structure, is very hard to initialize K
correctly.

In this specific case, nevertheless, we know that there are two diseases in the collected data, so we can set
K =2.

Cross-validation is not a reasonable option in unsupervised learning problems, as we do not know the true
outcome, so we cannot have a measure of the error.

A possible way to solve the problem of selecting the right K is to implement the so called “elbow method”:
K-means is run with an increasing number of clusters, which leads to a decreasing deviance within the groups.
Initially the increase in the number of clusters leads to a substantial decrease in the within deviance, but at a
certain point this decrease will start to be small, not justifing an increase of the number of cluster. That
point corresponds to the selected K. A possible alternative is to use the GAP statistic.

e Hierarchical clustering

el

Using an agglomerative strategy and a complete link, a hierarchical clustering method provides this dendro-
gram,

do <- dist(X)
hl <- hclust(dO, method
plot(hl, xlab = '', sub

"complete")
'complete link')
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Things to notice here:

there is a group formed by only one observation, which seems an outlier. An automatic division with
the “correct” K = 2 would provide a very bad result;

even not considering this specifc point, the observations are not well separated, and one must select
many clusters to have a good separation between AML and ALL observations;

if we did not know the true K, it would be hard to select it: the decrease in deviance is relatively small
for each increase of the number of clusters;

it seems that we are experiencing the so called “curse of dimensionality™”.



e2

Here only a plot was required, with the percentage of original variance “contained” in each principal
components,

principal.comp <- prcomp (X)

plot(principal.comp$sdev™2/sum(principal.comp$sdev™2), xlab = 'PC index',

ylab = 'percentage of variance')
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Finally, applying the hierarchical clustering algorithm to the first two principal components only, leads to the
following dendrogram,

d2 <- dist(principal.comp$x[, 1:2])
h2 <- hclust(d2, method = "complete")
plot(h2, xlab = '', sub = 'complete link')
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Things to notice here:

 using the “correct” K = 2, we would have a relatively good result (the left cluster including almost
only AML observations, the right one almost all the ALL);

e already with K = 4 the split is extremely good;

 using an heuristic procedure, we would choose K = 3, very close to the true value (2) and to a value
(the aforementioned 4) that provides a very good separation. With K = 3 we would have a group
clearly AML (the left one), one clearly ALL (the central one) and one with mixed type of observations
(the right one), that could be in turn easily split in two separate subclusters;

e the improvement with respect to the dendrogam of point e.l is substantial.

Note: both in points e.1 and e.3 the privided interpretation is one out of many reasonable ones, as long as
the discussion was reasonable and supported by evidence, the answer was valid.
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