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ISLR book
Exercise 6.2
a)

Alternative iii is the correct choice; The lasso limits the number of predictors, thus it reduces the inherent
variance at the cost of an increase in bias. This can be interpreted as follows. Removing a predictor from
the model is equivalent to saying the removed feature does not have a strong relationship with the target
value, this may be a biased statement but it decreases the variance as a lower number of values need to be
estimated from data.

b)

Alternative iii is the correct choice; Ridge regression will produce more biased models as it shrinks predictors
that don’t have as a strong relationship with the target variable; the variance will decrease at the cost of an
increase in bias.

c)

Alternative ii is the correct choice; Nonlinear methods have a higher variance than regular least scares. The
curve will follow the observations more tightly than otherwise, causing the model to perform better when
there is a underlying non-linear relationship between the predictors and the target variable.

Exercise 6.3
a)

Alternative iv is the correct choice; There will be a monotonically decrease in training RSS as a bigger set of
solutions becomes feasible and an increase in variance occurs.

b)

Alternative ii is the correct choice; An increase in s means there will be an increase in flexibility in the model.
For s = 0, we have the intercept model, so the test RSS will be high. As s increase we get a more flexible
model which are able to fit the data better and we get a decrease in test RSS. However, when s is too big, we
start to overfit the training data and we are not able to exploit the bias-variance-trade-off, hence, the test
RSS starts to increase.

c)

Alternative iii is the correct choice; When s increase we get a more flexible model, hence, the variance will
steadily increase.
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d)

Alternative iv is the correct choice; When s increase we go from the intercept model (s = 0) with a high
squared bias to a more flexible model with a lower squared bias. Unbiased in the limit. Hence, the squared
bias will steadily decrease.

e)

Alternative v is the correct choice; As it names states, the irreducible error will remain constant. The
irreducible error is independent of model parameters and thus independent of s.

Exercise 6.10
We have seen that as the number of features used in a model increases, the training error will necessarily
decrease, but the test error may not. We will now explore this in a simulated data set.

a)

We generate a data set with p = 20 features, n = 1000 observations, and an associated quantitative response
vector generated according to the model Y = Xβ + ε, where β has some elements that are exactly equal to
zero.

If we generate the data in another way, we get quite different results. And the seed highly
influence the results.
# Seet seed for reproducibility
set.seed(2021)

# Set the parameters
p = 20
n = 1000

# Create a matrix of n \times p
X = matrix(rnorm(n*p), n, p)

# Create a vector of beta and randomly assign 0 to some betas
b = rnorm(p)
b[1] = b[3] = b[5] = b[7] = b[9] = 0

# Generating the error terms
error = rnorm(n)

# Multiplying X and beta to get y
y = X %*% b + error

b)

Split your data set into a training set containing 100 observations and a test set containing 900 observations.
# Create a vector train of length 100 and assign them random
# index number chosen from 1 to n.
train = sample(seq(n), 100, replace=FALSE)

# Create a vector test which contains rest of the indices
test = (-train)

# Subset X matrix for the given sequence in train and test
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x.train = X[train,]
x.test = X[test,]
y.train = y[train]
y.test = y[test]

c)

Perform best subset selection on the training set, and plot the training set MSE associated with the best
model of each size.
# Import the leaps library to conduct the best subset selection
library(leaps)

# Combine training data and training response into a common data frame
data.train = data.frame(y = y.train, x = x.train)

# See ?regsubsets. Conducts model selection by exhaustive search.
regfit.full = regsubsets(y ~ ., data = data.train, nvmax = p)

# Construct design matrix
train.mat = model.matrix(y ~ ., data = data.train, nvmax = p)

# Array to store the training MSE
val.errors = rep(NA, p)

# Iterate over the number of predictors
for (i in 1:p) {

# Get the coefficients of the model with i predictors
coefi = coef(regfit.full, id = i)

# Compute the predictions for the training data
pred = train.mat[, names(coefi)] %*% coefi

# Compute the corresponding training MSE
val.errors[i] = mean((pred - y.train)^2)

}

# Plot the training MSE
plot(val.errors, xlab = "Number of predictors",

ylab = "Training MSE", pch = 19, type = "b",col="orange")
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d)

Plot the test set MSE associated with the best model of each size.
# Create a data frame of the test data.
data.test = data.frame(y = y.test, x = x.test)

# Create the corresponding design matrix
test.mat = model.matrix(y ~ ., data = data.test, nvmax = p)

# Array to store the test MSE
val.errors = rep(NA, p)

# Iterate over the p models
for (i in 1:p) {

# Get the coefficients of the ith model
coefi = coef(regfit.full, id = i)

# Compute the predictions of the test instances
pred = test.mat[, names(coefi)] %*% coefi

# Comptue the test MSE
val.errors[i] = mean((pred - y.test)^2)

}

# Plot the test MSE
plot(val.errors, xlab = "Number of predictors",

ylab = "Test MSE", pch = 19, type = "b",col="orange")
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e)

For which model size does the test set MSE take on its minimum value? Comment on your results. If it takes
on its minimum value for a model containing only an intercept or a model containing all of the features, then
play around with the way that you are generating the data in (a) until you come up with a scenario in which
the test set MSE is minimized for an intermediate model size.
which.min(val.errors) # 14

## [1] 14

We get that the model with 14 variables is the one with the lowest test set MSE.

f)

How does the model at which the test set MSE is minimized compare to the true model used to generate the
data? Comment on the coefficient values.
coef(regfit.full, which.min(val.errors))

## (Intercept) x.2 x.4 x.6 x.8 x.10
## 0.007858244 -0.966883088 0.488157768 -0.895973419 -1.224552344 -1.128006294
## x.12 x.13 x.14 x.15 x.16 x.17
## 0.727396529 -1.020616370 -2.492471074 -0.493006806 -0.852328431 0.352594406
## x.18 x.19 x.20
## 0.259739532 1.009661083 -0.613034766

We zeroed certain parameters in true model. More precisely, we set β1 = β3 = β5 = β7 = β9 = 0, and the
best subset model, for which the test MSE is minimum, is able to identify those variables and remove them
from the model (in addition to removing β11, and note that our model had β0 = 0).

g)

Create a plot displaying
√∑p

j=1(βj − β̂rj )2 for a range of values of r, where β̂rj is the jth coefficient estimate
for the best model containing r coefficients. Comment on what you observe. How does this compare to the
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test MSE plot from (d)?
# Array to store the results
val.errors = rep(NA, p)

# Get the colnames of the X matrix
x_cols = colnames(X, do.NULL = FALSE, prefix = "x.")

# Iterate over the different best models
for (i in 1:p) {

# Get the coefficients of the ith model
coefi = coef(regfit.full, id = i)

# Compute the values of interest
val.errors[i] =

sqrt(sum((b[x_cols %in% names(coefi)] - coefi[names(coefi) %in% x_cols])^2)
+ sum(b[!(x_cols %in% names(coefi))])^2)

}
which.min(val.errors)

## [1] 14

# Plot the values
plot(val.errors, xlab = "Number of Predictors",

ylab = "Mean Square Error for estimated and true coefficients",
pch = 19, type = "b", col="orange")
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It can be seen that the error is minimized for 14 variables. The test MSE is also minimum for the 14 variable
model.

We can be lead to the conclude that the model which gives parameter estimates closest to true parameter
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estimate also gives the least test MSE, but if we alter the seed above, then we would see that the model
which gives parameter estimates closest to true parameter estimate does not need to be the same model as
the one that gives the least test MSE, that is, it need not be the best model to predict the response of new
observations.

Try to alter the seed yourself and look at how the results change!

Textbook
Exercise 4.3
Consider the parameter h of local regression. Why is it not estimated by a standard method such as maximum
likelihood?

If h had been fitted based on the maximum likelihood principle, we would have ended up with an overfitted
model. I.e., the model would follow the structure of the training data too much and would not be able to
generalize well to an independent test set. The procedure would favor a small h such that the local regression
model would be extremely flexible and fit the training data precisely, and thereby increase the likelihood
function. Hence, the model would not follow the general tendencies of the data, as would be the case for a
larger h, see Figure 4.1 in the textbook.

Exercise 4.5
We are asked to show that f(x) =

∑K+4
j=1 βjhj(x) (see (4.10) in the textbook) satisfies three conditions, which

characterize cubic splines. Here, hj(x) = xj−1, for j = 1, 2, 3, 4, and hj+4(x) = (x− ξj)3
+, for j = 1, 2, . . . ,K.

Note that a+ = max(0, a) and ξ0 = −∞ and ξK+1 = ∞. For more intuition, see e.g. Figure 4.5 in the
textbook, and section 7.4 in ISLR.

We will here demonstrate it for K = 1. This procedure can then easily be generalized to higher values of
knots K, but we get a little bit more intricate expressions.

We then have that

f(x) = β1h1(x) + β2h2(x) + β3h3(x) + β4h4(x) + β5h5(x)
= β1 + β2x+ β3x

2 + β4x
3 + β5(x− ξ1)3

+.

1)

Show that f is a cubic function in each subinterval [ξj , ξj+1), for j = 1, . . . ,K−1. The function f is obviously
a cubic function in the subinterval [ξ0, ξ1) = (−∞, ξ1) by definition.

In our setting, we will only show that it holds in the interval [ξ1, ξ2) = [ξ1,∞), as we only consider K = 1. In
this subinterval, f takes the following shape

f(x) = β1 + β2x+ β3x
2 + β4x

3 + β5(x− ξ1)3
+

= β1 + β2x+ β3x
2 + β4x

3 + β5x
3 − 3β5x

2ξ1 + 3β5xξ
2
1 − β5ξ

3
1

= (β1 − β5ξ
3
1) + (β2 + 3β5ξ

2
1)x+ (β3 − 3β5ξ1)x2 + (β4 + β5)x3,

which is clearly a cubic function.

2)

Show that f has two continuous derivatives. Thsi statement is obviously true on each subinterval, so we only
have to consider the what happens with f at x = ξ1, i.e., on the knot.
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For x ↑ ξ1, we have that
f ′′−(x) = 2β3 + 6β4x.

While for x ↓ ξ1, we have that

f ′′+(x) = 2(β3 − 3β5ξ1) + 6(β4 + β5)x = 2β3 + 6β4x+ 6(β5x− β5ξ1).

Here I have used ‘-’ and ‘+’ in the subscript of f to indicate that x < ξ1 and ξ1 ≤ x, respectively.

If we evaluate f ′′−(x) and f ′′+(x) in x = ξ1 (limit-wise), we get

lim
x↑ξ1

f ′′−(x) = 2β3 + 6β4ξ1

and
lim
x↓ξ1

f ′′+(x) = 2β3 + 6β4ξ1.

Thus, f has two continuous derivatives.

3)

If we differentiate the functions in b) one more time, we get that f ′′′− (x) = 6β4 and f ′′′+ (x) = 6β4 + 6β5. That
is, we get that f has a jump in the third derivative at the knot point ξ1. So the third derivative is what we
call a step function.

All of the calculations above can easily be extended to the case with K knots, it only involves more terms,
but the ideas are exactly the same.

Exercise 4.6
We are asked to prove (4.12). We want to find the θ̂ which minimses D = (y − Nθ)T (y − Nθ) + λθTΩθ,
where Ω is a symmetric matrix. We follow the same strategy as when we computed the regular least square
solutions. I.e., first, expand D,

D = (y −Nθ)T (y −Nθ) + λθTΩθ
= yT y − yTNθ − θTNT y + θTNTNθ + λθTΩθ
= yT y − (NT y)T θ − θT (NT y) + θT (NTN)θ + λθTΩθ,

then differentiate it with respect to θ, (see (69) and (81) in http://www2.imm.dtu.dk/pubdb/edoc/imm3274
.pdf),

D′ = −NT y −NT y + [NTN + (NTN)T ]θ + λ(Ω + ΩT )θ
= −2NT y + [NTN +NTN ]θ + λ(Ω + Ω)θ
= −2NT y + 2NTNθ + 2λΩθ,

set it equal to zero and solve for θ,

−2NT y + 2NTNθ + 2λΩθ = 0
2NTNθ + 2λΩθ = 2NT y

NTNθ + λΩθ = NT y

(NTN + λΩ)θ = NT y

θ = (NTN + λΩ)−1NT y.

Thus, the value θ̂ which minimses D is θ̂ = (NTN + λΩ)−1NT y, which is what we were asked to prove.

8

http://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf
http://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf

	ISLR book
	Exercise 6.2
	a)
	b)
	c)

	Exercise 6.3
	a)
	b)
	c)
	d)
	e)

	Exercise 6.10
	a)
	b)
	c)
	d)
	e)
	f)
	g)


	Textbook
	Exercise 4.3
	Exercise 4.5
	1)
	2)
	3)

	Exercise 4.6


