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Textbook
Exercise 4.7
Consider a non-parametric model Yi = f(xi1, xi2, . . . , xip) + εi, where E[εi] = 0 and var(εi) = σ2, for
i = 1, 2, . . . , n. Assume that all error terms εi are independent of each other. This means that var(Yi) = σ2,
which is used in the computations below, indicated by ind above the equality sign. Consider the linear
smoother Ŷ = SY , where S is a n × n matrix, si is the ith row of S, and Y = (Y1, Y2, . . . , Yn)T . We can
then express cov(Ŷi, Yi) as

cov(Ŷi, Yi) = cov(siY, Yi)

=
n∑

j=1
cov(sijYj , Yi)

=
n∑

j=1
sij cov(Yj , Yi)

ind= sii cov(Yi, Yi)
= sii var(Yi)
= siiσ

2.

Futhermore, this means that
n∑

i=1
cov(Ŷi, Yi) =

n∑
i=1

siiσ
2 = tr(S)σ2,

which was what we were asked to prove.

Exercise 4.8
We are asked to show that for the tree growth algorithm, see section 4.8.2 on page 99, we have thatDj −D∗j > 0,
aparat from a degenerate case. Let Rj be the region of interest in the current iteration of the tree growth
algorithm. That is, the region Rj will be divided into two subregions denoted by R′j and R′′j .

From (4.16) on page 102, we have that Dj =
∑

i∈Rj
(yi − ĉj)2, where ĉj is the average value of the response

values in ragion Rj . That is, ĉj = argminc

∑
i∈Rj

(yi − c)2. Thus any other value than ĉj will increase Dj .
The same is true for the two subregions R′j and R′′j and their corresponing averages ĉ′j and ĉ′′j , respectively.
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We then look at D∗j , see page 103, and we get that

D∗j =
∑
i∈R′

j

(yi − ĉ′j)2 +
∑

i∈R′′
j

(yi − ĉ′′j )2

<
∑
i∈R′

j

(yi − ĉj)2 +
∑

i∈R′′
j

(yi − ĉj)2

=
∑
i∈Rj

(yi − ĉj)2

= Dj .

If we subtract D∗j from both sides, we get that Dj −D∗j > 0, which was what we were asked to show. This
will not be the case in degenerate settings, such as, if Rj only contains one response, or if Rj contains several
responses but with identical response values. It the latter case, we would then have that ĉj = ĉ′j = ĉ′′j and
thereby no gain.

ISL book
Exercise 7.1
This exercise is related to Exercise 4.3 from last week.

It was mentioned in the chapter that a cubic regression spline with one knot at ξ can be obtained using a
basis of the form x; x2, x3, (x− ξ)3

+, where (x− ξ)3
+ = (x− ξ)3 if x > ξ and equals 0 otherwise. We will now

show that a function of the form

f(x) = β0 + β1x+ β2x
2 + β3x

3 + β4(x− ξ)3
+

is indeed a cubic regression spline, regardless of the values of β0, β1, β2, β3, β4.

a)

Find a cubic polynomial
f1(x) = a1 + b1x+ c1x

2 + d1x
3

such that f(x) = f1(x) for all x ≤ ξ. Express a1, b1, c1, d1 in terms of β0, β1, β2, β3, β4.

For x ≤ ξ, we have
f(x) = β0 + β1x+ β2x

2 + β3x
3,

so we take a1 = β0, b1 = β1, c1 = β2 and d1 = β3.

b)

Find a cubic polynomial
f2(x) = a2 + b2x+ c2x

2 + d2x
3

such that f(x) = f2(x) for all x > ξ. Express a2, b2, c2, d2 in terms of β0, β1, β2, β3, β4. We have now
established that f(x) is a piecewie polynomial.

For x > ξ, we have

f(x) = β0 + β1x+ β2x
2 + β3x

3 + β4(x− ξ)3

= (β0 − β4ξ
3) + (β1 + 3ξ2β4)x+ (β2 − 3β4ξ)x2 + (β3 + β4)x3,

so we take a2 = β0 − β4ξ
3, b2 = β1 + 3ξ2β4, c2 = β2 − 3β4ξ and d2 = β3 + β4.
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c)

Show that f1(ξ) = f2(ξ). That is f(x) is continuous at ξ.

We have immediately that
f1(ξ) = β0 + β1ξ + β2ξ

2 + β3ξ
3

and

f2(ξ) = (β0 − β4ξ
3) + (β1 + 3ξ2β4)ξ + (β2 − 3β4ξ)ξ2 + (β3 + β4)ξ3

= β0 + β1ξ + β2ξ
2 + β3ξ

3.

d)

Show that f ′1(ξ) = f ′2(ξ). That is f ′(x) is continuous at ξ.

We also have immediately that
f ′1(ξ) = β1 + 2β2ξ + 3β3ξ

2

and

f ′2(ξ) = β1 + 3ξ2β4 + 2(β2 − 3β4ξ)ξ + 3(β3 + β4)ξ2

= β1 + 2β2ξ + 3β3ξ
2.

e)

Show that f ′′1 (ξ) = f ′′2 (ξ). That is f ′′(x) is continuous at ξ. Therefore, f(x) is indeed a cubic spline.

We finally have that
f ′′1 (ξ) = 2β2 + 6β3ξ

and

f ′′2 (ξ) = 2(β2 − 3β4ξ) + 6(β3 + β4)ξ
= 2β2 + 6β3ξ.

Exercise 7.9
This question uses the variables “dis” (the weighted mean of distances to five Boston employment centers)
and “nox” (nitrogen oxides concentration in parts per 10 million) from the “Boston” data. We will treat “dis”
as the predictor and “nox” as the response.

a)

Use the “poly()” function to fit a cubic polynomial regression to predict “nox” using “dis”. Report the
regression output, and plot the resulting data and polynomial fits.
# Include 'MASS' to get the data
library(MASS)

# Set seed for reproducibility
set.seed(1)
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# Fit the model using cubic polynomial regression
fit = lm(nox ~ poly(dis, 3), data = Boston)

# Look at the model
summary(fit)

##
## Call:
## lm(formula = nox ~ poly(dis, 3), data = Boston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.121130 -0.040619 -0.009738 0.023385 0.194904
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.554695 0.002759 201.021 < 2e-16 ***
## poly(dis, 3)1 -2.003096 0.062071 -32.271 < 2e-16 ***
## poly(dis, 3)2 0.856330 0.062071 13.796 < 2e-16 ***
## poly(dis, 3)3 -0.318049 0.062071 -5.124 4.27e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06207 on 502 degrees of freedom
## Multiple R-squared: 0.7148, Adjusted R-squared: 0.7131
## F-statistic: 419.3 on 3 and 502 DF, p-value: < 2.2e-16
# Get the range of the predictor dis
dislims = range(Boston$dis)

# Create a grid for the dis predictor
dis.grid = seq(from = dislims[1], to = dislims[2], by = 0.1)

# Compute the predicted values at the grid points
preds = predict(fit, list(dis = dis.grid))

# Plot the data
plot(nox ~ dis, data = Boston, col = "darkgrey")

# Add the cubic polynomial. Follows the data quite nice
lines(dis.grid, preds, col = "red", lwd = 2)
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We may conclude that all polynomial terms are significant.

b)

Plot the polynomial fits for a range of different polynomial degrees (say, from 1 to 10), and report the
associated residual sum of squares.
# Create some new values for which we will evaluate the models
x=seq(dislims[1], dislims[2],length.out = 100)

# Get 10 different colors
clrs=rainbow(10)

{
# Plot the data
plot(Boston[,c('dis','nox')])

# Array to store the RSS
rss = rep(NA, 10)

# Iterate over the different degrees
for (i in 1:10) {

# Fit the models
fit = lm(nox ~ poly(dis, i), data = Boston)

# Get the predicted curves
pred = predict(fit,data.frame(dis=x))

# Plot the curves
lines(x,pred,col=clrs[i])

# Store the RSS
rss[i] = sum(fit$residuals^2)
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}
# Add a legend
legend(x='topright',legend = 1:10, col=clrs, lty = c(1,1),lwd = c(2,2),

bty = "n", cex = 0.7)
}
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# Plot the RSS
plot(1:10, rss, xlab = "Degree", ylab = "RSS", type = "l")
points(which.min(rss), rss[which.min(rss)],col='red', pch=20, cex=2)
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It seems that the RSS decreases with the degree of the polynomial, and so it is minimum for a polynomial of
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degree 10.

c)

Perform cross-validation or another approach to select the optimal degree for the polynomial, and explain
your results.
# Include the 'boot' library foor the 'cv.glm' function
library(boot)

# Set seed for reproducibility
set.seed(532)

# Array to store the cross validation MSE
deltas = rep(NA, 10)

# Iterate over the different degrees
for (i in 1:10) {

# Fit the model
fit = glm(nox ~ poly(dis, i), data = Boston)

# Conduct 10-fold cross validation and extract the cv MSE.
deltas[i] = cv.glm(Boston, fit, K = 10)$delta[1]

}

# Plot the cv MSE
plot(1:10, deltas, xlab = "Degree", ylab = "Cross Validation MSE", type = "l")
points(which.min(deltas),deltas[which.min(deltas)],col='red',pch=20,cex=2)
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We may see that a polynomial of degree 3 minimizes the cv MSE.
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d)

Use the bs() function to fit a regression spline to predict “nox” using “dis”. Report the output for the fit
using four degrees of freedom. How did you choose the knots? Plot the resulting fit.
# Include the 'splines' library with the 'bs' function
library(splines)

# Fit the spline model. Define knots at 4, 7, and 11.
fit = lm(nox ~ bs(dis, knots = c(4, 7, 11)), data = Boston)

# Look at the model
summary(fit)

##
## Call:
## lm(formula = nox ~ bs(dis, knots = c(4, 7, 11)), data = Boston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.124567 -0.040355 -0.008702 0.024740 0.192920
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.73926 0.01331 55.537 < 2e-16 ***
## bs(dis, knots = c(4, 7, 11))1 -0.08861 0.02504 -3.539 0.00044 ***
## bs(dis, knots = c(4, 7, 11))2 -0.31341 0.01680 -18.658 < 2e-16 ***
## bs(dis, knots = c(4, 7, 11))3 -0.26618 0.03147 -8.459 3.00e-16 ***
## bs(dis, knots = c(4, 7, 11))4 -0.39802 0.04647 -8.565 < 2e-16 ***
## bs(dis, knots = c(4, 7, 11))5 -0.25681 0.09001 -2.853 0.00451 **
## bs(dis, knots = c(4, 7, 11))6 -0.32926 0.06327 -5.204 2.85e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06185 on 499 degrees of freedom
## Multiple R-squared: 0.7185, Adjusted R-squared: 0.7151
## F-statistic: 212.3 on 6 and 499 DF, p-value: < 2.2e-16
# Compute the predictions
pred = predict(fit, list(dis = dis.grid))

# Plot the data and the predicted spline. Quite good fit
plot(nox ~ dis, data = Boston, col = "darkgrey")
lines(dis.grid, preds, col = "red", lwd = 2)
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We may conclude that all terms in spline fit are significant.

e)

Now fit a regression spline for a range of degrees of freedom, and plot the resulting fits and report the resulting
RSS. Describe the results obtained.
# Array to store the RSS
rss = rep(NA, 16)

# Get colors
clrs=rainbow(16)

# Create values at which we plot the fitted model
x=seq(min(Boston[,'dis']), max(Boston[,'dis']), length.out = 100)
{

# Plot the data
plot(Boston[,c('dis','nox')], ylim=c(0,1))

# Iterate over the degrees of freedom
for (i in 3:16) {

# Fit the splines
fit = lm(nox ~ bs(dis, df = i), data = Boston)

# Get the predictions
y=predict(fit,data.frame(dis=x))

# Plot the predictions
lines(x,y,col=clrs[i])

# Store the rss
rss[i] = sum(fit$residuals^2)

}
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# Add a legend
legend(x='topright',legend=3:16,text.col=clrs[3:16],

text.width=0.5,bty = 'n',horiz = T, cex = 0.4)
}
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# Plot the RSS
plot(3:16, rss[-c(1, 2)], xlab = "Degrees of freedom", ylab = "RSS", type = "l")
points(which.min(rss),rss[which.min(rss)],col='red',pch=20,cex=2)
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We may see that RSS decreases until 14 and then slightly increases after that.
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f)

Perform cross-validation or another approach in order to select the best degrees of freedom for a regression
spline on this data. Describe your results.
# Set seed for reproducibility
set.seed(42)

# Array to store the spline mse
spline.mse=rep(NA, 16)

# Iterate over the different degrees of freedom
for(df in 3:16){

# Create the model frame
Boston.model=model.frame(nox~bs(dis,df=df), data=Boston)

# Need set the names for the methods to work
names(Boston.model) = c('nox','bs.dis')

# Fit the splines
spline.fit=glm(nox~bs.dis,data=Boston.model)

# Conduct 10-fold cross validation and extract the cv MSE
spline.mse[df]=cv.glm(spline.fit,data=Boston.model,K=10)$delta[1]

}

# Plot the cv MSE for splines
plot(3:16,spline.mse[-c(1,2)],type='l',xlab='Df',ylab='Cross Val. MSE for Splines')
points(which.min(spline.mse),spline.mse[which.min(spline.mse)],col='red',pch=20,cex=2)
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Cross validation MSE is minimum for 10 degrees of freedom.
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Exercise 7.10
This question relates to the “College” data set.

a)

Split the data into a training set and a test set. Using out-of-state tuition as the response and the other
variables as the predictors, perform forward stepwise selection on the training set in order to identify a
satisfactory model that uses just a subset of the predictors.
# Import necessary libraries
library(leaps)
library(ISLR)

# attach the college data
attach(College)

# Set seed for reproducibility.
# The results later on depends on the seed
set.seed(2020)

# Create train and test data
train = sample(length(Outstate), length(Outstate) / 2)
test = -train
College.train = College[train, ]
College.test = College[test, ]

# Do forward selection
fit = regsubsets(Outstate ~ ., data = College.train, nvmax = 17, method = "forward")

# Compute summary of the fit
fit.summary = summary(fit)

# Create plot of different selction criteria
par(mfrow = c(1, 3))

# Cp
plot(fit.summary$cp, xlab = "Number of variables",

ylab = "Cp", type = "l")
min.cp = min(fit.summary$cp)
std.cp = sd(fit.summary$cp)
abline(h = min.cp + 0.2 * std.cp, col = "red", lty = 2)
abline(h = min.cp - 0.2 * std.cp, col = "red", lty = 2)

# BIC
plot(fit.summary$bic, xlab = "Number of variables",

ylab = "BIC", type='l')
min.bic = min(fit.summary$bic)
std.bic = sd(fit.summary$bic)
abline(h = min.bic + 0.2 * std.bic, col = "red", lty = 2)
abline(h = min.bic - 0.2 * std.bic, col = "red", lty = 2)

# Adjusted R^2
plot(fit.summary$adjr2, xlab = "Number of variables",

ylab = "Adjusted R2", type = "l", ylim = c(0.4, 0.84))
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max.adjr2 = max(fit.summary$adjr2)
std.adjr2 = sd(fit.summary$adjr2)
abline(h = max.adjr2 + 0.2 * std.adjr2, col = "red", lty = 2)
abline(h = max.adjr2 - 0.2 * std.adjr2, col = "red", lty = 2)
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Cp, BIC and adjr2 gives different results. The red lines are 0.2 standard deviations from the optimum. Seems
that a model of size 6 is fair compromise between the three evaluation methods. This can be argued. Could
also look at training MSE. Then size 7 would win.
# Do forward selection
fit = regsubsets(Outstate ~ ., data = College, method = "forward")

# Select the best model with 6 predictores
coeffs = coef(fit, id = 6)

# Look at which predictors we use, in addition to intercept.
names(coeffs)

## [1] "(Intercept)" "PrivateYes" "Room.Board" "PhD" "perc.alumni"
## [6] "Expend" "Grad.Rate"

b)

Fit a GAM on the training data, using out-of-state tuition as the response and the features selected in the
previous step as the predictors. Plot the results, and explain your findings.
# Include the 'gam' library for the 'gam()' function
library(gam)

## Loading required package: foreach

## Loaded gam 1.20
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# Fit a gam using the predictors above on the training data
fit = gam(Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, df = 2) +

s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, df = 2),
data=College.train)

# Plot the six fitted additve models
par(mfrow = c(2, 3))
plot(fit, se = T, col = "blue")
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Grad.Rate, Room.Board, and somewhat PhD seems quite linear, while the other continuous variable are higly
non-linear.

c)

Evaluate the model obtained on the test set, and explain the results obtained.
# Use the model to predict the test responses
preds = predict(fit, College.test)

# Compute the mean squared test error
err = mean((College.test$Outstate - preds)^2)
err

## [1] 3171279
# Compute the test TSS and then RSS
tss = mean((College.test$Outstate - mean(College.test$Outstate))^2)
rss = 1 - err / tss
rss

## [1] 0.7951092
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We obtain a test Rˆ2 of 0.795 using GAM with 6 predictors. That is, about 79.5% of the variance encountered
in the data is explained by this model.

d)

For which variables, if any, is there evidence of a non-linear relationship with the response?
# Use summary to see if there is evidence of a non-linear relationship
summary(fit)

##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, df = 2) + s(PhD,
## df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate,
## df = 2), data = College.train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7440.52 -1225.07 22.48 1270.47 6919.54
##
## (Dispersion Parameter for gaussian family taken to be 3886232)
##
## Null Deviance: 6526177771 on 387 degrees of freedom
## Residual Deviance: 1449565520 on 373.0002 degrees of freedom
## AIC: 7004.903
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1597314625 1597314625 411.019 < 2.2e-16 ***
## s(Room.Board, df = 2) 1 1141857525 1141857525 293.821 < 2.2e-16 ***
## s(PhD, df = 2) 1 306261193 306261193 78.807 < 2.2e-16 ***
## s(perc.alumni, df = 2) 1 267921177 267921177 68.941 1.89e-15 ***
## s(Expend, df = 5) 1 566110411 566110411 145.671 < 2.2e-16 ***
## s(Grad.Rate, df = 2) 1 103679645 103679645 26.679 3.92e-07 ***
## Residuals 373 1449565520 3886232
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, df = 2) 1 3.5363 0.06082 .
## s(PhD, df = 2) 1 2.7823 0.09615 .
## s(perc.alumni, df = 2) 1 3.9421 0.04783 *
## s(Expend, df = 5) 4 20.8798 1.554e-15 ***
## s(Grad.Rate, df = 2) 1 2.0846 0.14963
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANOVA shows a strong evidence of non-linear relationship between “Outstate” and “Expend”“, and a
moderately strong non-linear relationship (using p-value of 0.05) between”Outstate" and “perc.alumni”. Note
that this highly depends on the seed. Furthermore, compare these results with what we saw in subquestion b).
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