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Textbook
Exercise 5.4
The x-axis of a ROC-plot corresponds to the false positive rate

FPR = fall-out = 1− Specificity = False Positive
False Positive + True Negative .

That is, the proportion of ‘No’ observations that is classified as calss ‘Yes’ by our classifier. The y-axis of a
ROC-curve corresponds to the true positive rate

TPR = Sensitivity = recall = hit-rate = True Positive
True Positive + False Negative .

That is, the proportion of ‘Yes’ observations that our classifier label as ‘Yes’. If you are on the diagonal, this
means that these two ratios are the same, which happens if the labels are chosen randomly.

Note that the book define the orientation of the x-axis and y-axis this way, but other books flip this, i.e.,
they have TPR on the x-axis and FPR on the y-axis.

Figure 1: A figurative explanation of FPR and TPR.

To fully understand the diagonal line. First, think that we classify the labels at random, i.e., Pr(Y es) = α
and Pr(No) = 1 − α, where α ∈ [0, 1]. Second, assume that our data consists of NNo observations from
class ‘No’ and NY es observations from class ‘Yes’. That is a total of N = NNo +NY es observations. Then
TN = (1 − α)NNo, FP = αNNo, FN = (1 − α)NY es, and TP = αNY es. Note that these sum to N .
Furthermore, by simple algebra, we get that FPR = TPR = α. Hence, we get the diagonal line by varying α
from 0 to 1.

Especially, note that classifying with the help of a coin will yield the coordinate (0.5, 0.5) in ROC-space.

For some nice explanatory figures, see https://dzone.com/articles/what-it-the-interpretation-of-the-diagonal-
for-a-r.
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Exercise 5.5
A binary classifier with a ROC curve that is completely under the diagonal is not necessarily a poor classifier.
This behavior only means that the classifier label the observations in a flipped manner. That is, in stead of
labeling observations with label ‘Yes’, it labels them with ‘No’. This is easily fixed by flipping the labels, and
voila, you got a good classifier.

You get a ROC curve that is partly under the diagonal when for example the standard deviations of the two
outcomes are rather different. Look at the distribution plots in the first link below and and think what would
happen if they did not have the same spread.

If you still not find ROC-curves intuitive, then you might want to read/look at the figures in https://toward
sdatascience.com/demystifying-roc-curves-df809474529a and http://mlwiki.org/index.php/ROC_Analysis.

Extra exercise:

1. Simulate X1, . . . , X40 ∼ N (0, 12) and Y1, . . . , Y40 ∼ N (1, 32). Let the Xs have label ’No’ and the Ys
label ’Yes’.

2. Let the threshold value ω vary from −10 to 10.

3. Label everything left of ω as ’No’ and everything right of ω as ’Yes’.

4. Plot the ROC. What do you see? How does the curve behave?

Exercise 5.7
Let

∑K−1
k=0 πk(x) = 1, then

∑K−1
k=1 πk(x) = 1− π0(x). Assume that log πk(x)

π0(x) = ηk(x). Take the exponential
on both sides

πk(x)
π0(x) = exp{ηk(x)}. (1)

Then take the sums from k = 1 to K − 1 on both sides
K−1∑
k=1

πk(x)
π0(x) =

K−1∑
k=1

exp{ηk(x)}

1
π0(x)

K−1∑
k=1

πk(x) =
K−1∑
k=1

exp{ηk(x)}

1− π0(x)
π0(x) =

K−1∑
k=1

exp{ηk(x)}

1
π0(x) − 1 =

K−1∑
k=1

exp{ηk(x)}

1
π0(x) = 1 +

K−1∑
k=1

exp{ηk(x)}

π0(x) = 1
1 +

∑K−1
k=1 exp{ηk(x)}

.

Furthermore, from equation (1), we have that
πk(x)
π0(x) = exp{ηk(x)}

πk(x) = π0(x) exp{ηk(x)}

πk(x) = exp{ηk(x)}
1 +

∑K−1
j=1 exp{ηj(x)}
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In the exercise text it states that ηr(xi) = β0 +
∑p
j=1 xijβjr. And that we should use that (5.2) also holds

with r = 0, by setting βj0 = 0, for j = 0, 1, . . . , p. If (5.2) holds for r = 0, we get that

log π0(x)
π0(x) = log(1) = 0 =⇒ ηk(x) = 0.

Which is the case as βj0 = 0, for j = 0, 1, . . . , p. Furthermore, we then see that

π0(x) = exp{η0(x)}
1 +

∑K−1
j=1 exp{ηj(x)}

= 1
1 +

∑K−1
j=1 exp{ηj(x)}

,

which is what we derived initially.

ISLR
Exercise 7.5 CONCEPTUAL: Smoothing Splines
Consider the two curves, ĝ1 and ĝ2, defined by

ĝ1 = arg min
g

(
n∑
i=1

(yi − g(xi))2 + λ

∫
[g(3)(x)]2dx

)

ĝ2 = arg min
g

(
n∑
i=1

(yi − g(xi))2 + λ

∫
[g(4)(x)]2dx

)
where g(m) represents the mth derivative of g.

a) Training RSS as λ→∞
Q: As λ→∞, will ĝ1 or ĝ2 have the smaller training RSS?

A:

As λ increases, the penalty term becomes more and more important in the above equation.

For ĝ1, λ→∞ forces g(3)(x)→ 0. The highest order (most flexible) polynomial to satisfy this would be of
the form ĝ(x) = ax2 + bx+ c (as the third derivative would be zero). ĝ1 will therefore be the quadratic that
minimizes the training RSS.

For ĝ2, λ→∞ forces g(4)(x)→ 0. The highest order (most flexible) polynomial to satisfy this would be of
the form ĝ(x) = ax3 + bx2 + cx+ d (as the third derivative would be zero). ĝ2 will therefore be the cubic
that minimizes the training RSS.

Since ĝ2 would be more flexible as the higher order polynomial, ĝ2 would have the smaller training RSS.

b) Test RSS as λ→∞
Q: As λ→∞, will ĝ1 or ĝ2 have the smaller test RSS?

A:

We don’t know - it depends whether the true relationship between x and y is better approximated with a
cubic or quadratic relationship. It is possible that ĝ2 could be overfit and have a larger test RSS, or ĝ1 could
be underfit and have a larger test RSS.
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c) Training & Test RSS for λ = 0
Q: For λ = 0, will ĝ1 or ĝ2 have the smaller training and test RSS?

A:

For λ = 0 there is no restriction at all on g(x), so both ĝ1 and ĝ2 would have the same training RSS (of zero
if all the xi are unique). With no restrictions on g we can simply have any function that interpolates all the
training observations.

Both of these functions would be terribly overfit and have high test RSS. If we assume that the same
interpolating function was chosen for ĝ1 and ĝ2 (e.g. both were a linear spline with knots at each unique xi)
they would also clearly have the same test RSS.

Exercise 7.11 APPLIED: Generated Data (GAM Backfitting, p = 2)
Disclaimer

The following solutions were provided by Liam Morgan. He uses the the tidyverse library which is a common
package used in R to make data science faster, easier and more fun. The notation is a bit different from base
R, which you are used to, but you should able to understand the new notation. See https://www.tidyverse.org
for more on tidyverse. Especially important is the %>% notation, will simply means that it pass the left
hand side of the operator to the first argument of the right hand side of the operator. Thus, e.g., boston
%>% head() is equivalent to head(boston).

In Section 7.7, it was mentioned that GAMs are generally fit using a backfitting approach. The idea behind
backfitting is actually quite simple. We will now explore backfitting in the context of multiple linear regression.

Suppose that we would like to perform multiple linear regression, but we do not have software to do so.
Instead, we only have software to perform simple linear regression. Therefore, we take the following iterative
approach: we repeatedly hold all but one coefficient estimate fixed at its current value, and update only that
coefficient estimate using a simple linear regression. The process is continued until convergence - that is, until
the coefficient estimates stop changing.

We now try this out on a toy example.

a) Generate Data
Q: Generate a response Y and two predictors X1 and X2, with n = 100.

A:

I generate Y using the following model:

Y = 16 + 5.1X1 − 7.3X2 + ε

X1 ∼ N (0, 1)
X2 ∼ N (0, 1)
ε ∼ N (0, 1)

# The tidyverse is an opinionated collection of R packages
# designed for data science
library(tidyverse)
library(gridExtra) # combining graphs
select <- dplyr::select

set.seed(591)
x1 <- rnorm(100)
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x2 <- rnorm(100)
eps <- rnorm(100)

y <- 16 + 5.1*x1 - 7.3*x2 + eps

Here are the relationships visualized across two dimensions:
g1 <- data.frame(x1, x2, y) %>%

ggplot(aes(x1, y)) +
geom_point()

g2 <- data.frame(x1, x2, y) %>%
ggplot(aes(x2, y)) +
geom_point()

grid.arrange(g1, g2, ncol = 2)
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b) Initialize β̂1

Q: Initialize β̂1 to take on a value of your choice. It does not matter what value you choose.

A:

I will initialize β̂1 at 1:
beta_1 <- 1
beta_1

## [1] 1

c) Simple Linear Regression - Estimating β2

Q: Keeping β̂1 fixed, fit the model

Y − β̂1X1 = β0 + β2X2 + ε

You can do this as follows:
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r2 = y - beta_1 * x1
beta_2 = lm(r2 ~ x2)$coef[2]

A:

I change notation for the code a bit here.

Recall a couple of things from section 7.7 as it is useful to keep perspective on where this is used:

Fitting a GAM with a smoothing spline is not quite as simple as fitting a GAM with a natural
spline, since in the case of smoothing splines, least squares cannot be used. However, standard
software such as the gam() function in R can be used to fit GAMs using smoothing splines, via
an approach known as backfitting. This method fits a model involving multiple predictors by
repeatedly updating the fit for each predictor in turn, holding the others fixed. The beauty of
this approach is that each time we update a function, we simply apply the fitting method for that
variable to a partial residual.

Therefore, we first calculated the partial residual for x2 (‘r2’), which is y with the contribution of all other
explanatory variables subtracted (in this case, just x1): r2 = Y − β̂1X1:
r2 <- y - beta_1 * x1

I then fit a simple linear regression predicting this partial residual using x2. Extracting the coefficient gives
the initial value for β̂2:
beta_2 <- as.numeric(lm(r2 ~ x2)$coef[2])
beta_2

## [1] -7.396905

d) Simple Linear Regression - Estimating β1

Q: Keeping β̂2 fixed, fit the model

Y − β̂2X2 = β0 + β1X1 + ε

You can do this as follows:

r1 = y - beta_2 * x2
beta_1 = lm(r1 ~ x1)$coef[2]

A:

As before, but now for the partial residual for x1 (‘r1’). Note that we are now making use of the estimate β̂2
to replace the initial value of β̂1:
r1 <- y - beta_2 * x2

beta_1 <- as.numeric(lm(r1 ~ x1)$coef[2])
beta_1

## [1] 5.229975

Since we have fit the model r1 = β0 +β1X1 + ε, we can also get our estimate for β0 by extracting the intercept
coefficient:
beta_0 <- as.numeric(lm(r1 ~ x1)$coef[1])
beta_0

## [1] 16.13128
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We are already amazingly close to the true estimates.

e) Looping (1,000 Iterations)
Q: Write a for loop to repeat (c) and (d) 1,000 times. Report the estimates of β̂0, β̂1, and β̂2 at each iteration
of the for loop. Create a plot in which each of these values is displayed, with β̂0, β̂1, and β̂2 each shown in a
different color.

A:

I initialize β̂1 again at 1. I do not consider this initialization as part of the first iteration:
beta_1_init <- 1
beta_1_init

## [1] 1

I perform the 1,000 iterations in the code below.
beta_0 <- c()
beta_1 <- c()
beta_2 <- c()

# beta_2:
r2 <- y - beta_1_init * x1
beta_2[1] <- lm(r2 ~ x2)$coef[2]

# beta_1:
r1 <- y - beta_2[1] * x2
lm_coef <- lm(r1 ~ x1)$coef
beta_1[1] <- lm_coef[2]

# beta_0:
beta_0[1] <- lm_coef[1]

for (i in 2:1000) {
r2 <- y - beta_1[i-1] * x1
beta_2[i] <- lm(r2 ~ x2)$coef[2]

r1 <- y - beta_2[i-1] * x2
lm_coef <- lm(r1 ~ x1)$coef
beta_1[i] <- lm_coef[2]

beta_0[i] <- lm_coef[1]
}

The question says that this process continues until convergence, where the estimated coefficients no longer
change. It appears from the graph that this happens very quickly:
data.frame(iteration = 1:1000, beta_0, beta_1, beta_2) %>%

pivot_longer(-iteration, names_to = "coefficient", values_to = "estimate") %>%
ggplot(aes(x = iteration, y = estimate, col = factor(coefficient))) +
geom_line() +
scale_x_continuous(breaks = seq(0, 1000, 100), labels = scales::comma_format()) +
facet_wrap(coefficient ~ ., scales = "free_y", nrow = 3) +
theme(legend.position = "none") +
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labs(title = "Backfitting Convergence",
x = "Iteration",
y = "Parameter Estimate")
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f) Comparison - Backfitting vs Multiple Regression
Q: Compare your answer in (e) to the results of simply performing multiple linear regression to predict Y
using X1 and X2. Use the abline() function to overlay those multiple linear regression coefficient estimates
on the plot obtained in (e).

A:

I simply fit the multiple regression Y = β0 + β1X1 + β2X2 + ε to the data.

The fitted coefficients:
lm_coef <- lm(y ~ x1 + x2)$coefficients
lm_coef

## (Intercept) x1 x2
## 16.149420 5.234804 -7.273397

Overlaying these coefficients onto the previous plot (with a dashed line), it appears that the looped simple
linear regressions via backfitting gave the same (or very close) parameter estimates to those provided by
multiple regression, once they had converged:
data.frame(iteration = 1:1000, beta_0, beta_1, beta_2) %>%

pivot_longer(-iteration, names_to = "coefficient", values_to = "estimate") %>%
ggplot(aes(x = iteration, y = estimate, col = factor(coefficient))) +
geom_line() +
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geom_hline(data = data.frame(yint = lm_coef[1], coefficient = "beta_0"),
aes(yintercept = yint), linetype = "dashed") +

geom_hline(data = data.frame(yint = lm_coef[2], coefficient = "beta_1"),
aes(yintercept = yint), linetype = "dashed") +

geom_hline(data = data.frame(yint = lm_coef[3], coefficient = "beta_2"),
aes(yintercept = yint), linetype = "dashed") +

scale_x_continuous(breaks = seq(0, 1000, 100),
labels = scales::comma_format()) +

facet_wrap(coefficient ~ ., scales = "free_y", nrow = 3) +
theme(legend.position = "none") +
labs(title = "Backfitting Convergence",

x = "Iteration",
y = "Parameter Estimate")
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Extracting the backfitting coefficients at iteration 1,000 and comparing to those of multiple regression:
data.frame(simple_reg = c(beta_0[1000], beta_1[1000], beta_2[1000]),

multiple_reg = as.numeric(lm_coef))

## simple_reg multiple_reg
## 1 16.149420 16.149420
## 2 5.234804 5.234804
## 3 -7.273397 -7.273397

It certainly looks like they are identical, and the code below confirms.
identical(round(as.numeric(lm_coef), 12),

round(c(beta_0[1000], beta_1[1000], beta_2[1000]), 12))
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## [1] TRUE

g) Backfitting - Convergence Iterations
Q: On this data set, how many backfitting iterations were required in order to obtain a “good” approximation
to the multiple regression coefficient estimates?

A:

For this simple example, just one iteration gave us a ‘good’ approximation of multiple regression coefficients:
data.frame(iteration = 1:1000, beta_0, beta_1, beta_2) %>%

pivot_longer(-iteration, names_to = "coefficient", values_to = "estimate") %>%
ggplot(aes(x = iteration, y = estimate, col = factor(coefficient))) +
geom_line() +
geom_hline(data = data.frame(yint = lm_coef[1], coefficient = "beta_0"),

aes(yintercept = yint), linetype = "dashed") +
geom_hline(data = data.frame(yint = lm_coef[2], coefficient = "beta_1"),

aes(yintercept = yint), linetype = "dashed") +
geom_hline(data = data.frame(yint = lm_coef[3], coefficient = "beta_2"),

aes(yintercept = yint), linetype = "dashed") +
geom_point() +
scale_x_continuous(limits = c(1, 10), breaks = seq(1, 10), minor_breaks = NULL) +
facet_wrap(coefficient ~ ., scales = "free_y", nrow = 3) +
theme(legend.position = "none") +
labs(title = "Backfitting Convergence",

x = "Iteration",
y = "Parameter Estimate")
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It looks like convergence happens at iteration 3 from the graph, and that all subsequent iterations give the
same estimates.

A closer inspection shows that perhaps the coefficients haven’t completely converged by this point:
length(unique(round(beta_0, 6)[3:1000])) == 1 &
length(unique(round(beta_1, 6)[3:1000])) == 1 &
length(unique(round(beta_2, 6)[3:1000])) == 1

## [1] FALSE

Which iteration achieves ‘convergence’ happens seems to depend on our level of precision. For example, 6
decimal points (given by the multiple regression output) takes 5 iterations:
length(unique(round(beta_0, 6)[5:1000])) == 1 &
length(unique(round(beta_1, 6)[5:1000])) == 1 &
length(unique(round(beta_2, 6)[5:1000])) == 1

## [1] TRUE

I presume that the number of iterations required for a ‘good’ approximation will vary significantly based on
the strength of the relationships or number of variables.

Exercise 7.12 APPLIED: Generated Data (GAM Backfitting, p = 100)
Q: This problem is a continuation of the previous exercise. In a toy example with p = 100, show that one
can approximate the multiple linear regression coefficient estimates by repeatedly performing simple linear
regression in a backfitting procedure. How many backfitting iterations are required in order to obtain a “good”
approximation to the multiple regression coefficient estimates? Create a plot to justify your answer.

A:

I simulate the following relationship: Y = β0 +
∑100
i=1 βiXi + ε.

I first generate the ‘true’ parameters β = (β1, β2, . . . , β100). I generate the parameters from N (0, 1), with the
exception of β0 = beta_0, which I arbitrarily set at 3:
set.seed(101)

betas <- rnorm(100)
beta_0 <- 3

ggplot(data.frame(parameter = 0:100, value = c(beta_0, betas)),
aes(x = parameter, y = value)) +

geom_point(alpha = 0.3) +
labs(title = "True Generating Parameters",

x = "Parameter Number",
y = "True Value")
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I generate X = (X1, X2, . . . , X100) from N (0, 1) again. I decide to go with a 1,000 observations, so X is a
1, 000× 100 matrix:
set.seed(102)
X <- matrix(rnorm(1000 * 100), nrow = 1000, ncol = 100)
dim(X)

## [1] 1000 100

I wanted to introduce significant noise so that the relationships aren’t too strong. Here, ε ∼ N (0, 102):
set.seed(103)
noise <- rnorm(1000, sd = 10)

Finally I generate my response with Y = β0 +
∑100
i=1 βiXi + ε:

Y <- beta_0 + X %*% betas + noise

I fit a linear model and extracting the R2 to this data to get an idea of the strength of the relationship
between the response Y and the predictors in X:
summary(lm(Y ~ X))$r.squared

## [1] 0.528377

Backfitting:

I presume, based on the previous question, that the first step will need to be to provide an initial guess for
all parameters except one. That is, we must initialize β̂2, β̂2, . . . , β̂100. I take these as random estimates, as
the previous question suggests that these initial values aren’t important:
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betas_iter <- rep(NA, 100)
beta_0_iter <- NA

set.seed(104)
betas_iter[2:100] <- rnorm(99)

I now try 50 iterations of the backfitting process, estimating the βi one at a time in each iteration and
updating the parameter estimates each time.

The first iteration will fit 100 models, updating the parameters one at a time:

1. Y −
∑100
i=2 β̂iXi = β0 + β1X1 + ε

2. Y − β̂1X1 −
∑100
i=3 β̂iXi = β0 + β2X2 + ε

. . .

99. Y −
∑98
i=1 β̂iXi − β̂100X100 = β0 + β99X99 + ε

100. Y −
∑99
i=1 β̂iXi = β0 + β100X100 + ε

On the fit for X100 I will also update the estimate for β̂0.
# rows = iteration (first = initial), cols = beta_0, beta_1, ..., beta_100
beta_matrix <- matrix(nrow = 1 + 50, ncol = 1 + 100)
beta_matrix[1, 3:101] <- betas_iter[2:100]

for (i in 1:50) {

# update estimates for beta_1, ..., beta_100, then beta_0
for (p in 1:100) {

rp <- Y - X[ ,-p] %*% betas_iter[-p]
betas_iter[p] <- lm(rp ~ X[ ,p])$coef[2]

}

beta_0_iter <- lm(rp ~ X[ ,p])$coef[1]

# update matrix
beta_matrix[i + 1, ] <- c(beta_0_iter, betas_iter)

}

I drop the first row of beta_matrix, since it only contains the initialized random values of β̂2, β̂3, . . . , β̂100
that were required for the first simple linear regression.
beta_matrix <- beta_matrix[-1, ]
colnames(beta_matrix) <- c("(Intercept)", paste0("X", 1:100))
dim(beta_matrix)

## [1] 50 101

I display the first 20× 6 entries of beta_matrix, which now takes the form:


β̂0(1) β̂1(1) . . . β̂100(1)

β̂0(2)
. . .

... . . .
β̂0(50) β̂100(50)


where β̂j(k) is the estimate for βj at iteration k.
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beta_matrix[1:20, 1:6] %>% print(digits = 8)

## (Intercept) X1 X2 X3 X4 X5
## [1,] 3.2392615 -1.70704102 -0.12680456 -1.2913319 0.49017672 -0.42537690
## [2,] 3.2719487 -0.86775206 0.26510010 -1.1690149 -0.16608137 0.16336896
## [3,] 3.2818133 -0.77487081 0.34143174 -1.2004922 -0.19236642 0.22145118
## [4,] 3.2825939 -0.77934076 0.36537150 -1.2131186 -0.19448843 0.25010371
## [5,] 3.2828479 -0.77968237 0.37034730 -1.2175314 -0.19330619 0.24948653
## [6,] 3.2829583 -0.77969699 0.37061290 -1.2188563 -0.19344194 0.24843638
## [7,] 3.2829878 -0.77961440 0.37049857 -1.2192055 -0.19353794 0.24815108
## [8,] 3.2829950 -0.77957360 0.37044130 -1.2192901 -0.19356060 0.24808928
## [9,] 3.2829968 -0.77955950 0.37042193 -1.2193107 -0.19356394 0.24807633
## [10,] 3.2829973 -0.77955533 0.37041627 -1.2193158 -0.19356425 0.24807372
## [11,] 3.2829974 -0.77955421 0.37041474 -1.2193170 -0.19356427 0.24807323
## [12,] 3.2829974 -0.77955392 0.37041434 -1.2193173 -0.19356427 0.24807315
## [13,] 3.2829974 -0.77955386 0.37041425 -1.2193173 -0.19356427 0.24807314
## [14,] 3.2829974 -0.77955384 0.37041422 -1.2193173 -0.19356428 0.24807314
## [15,] 3.2829974 -0.77955383 0.37041422 -1.2193173 -0.19356428 0.24807314
## [16,] 3.2829974 -0.77955383 0.37041421 -1.2193173 -0.19356428 0.24807314
## [17,] 3.2829974 -0.77955383 0.37041421 -1.2193173 -0.19356428 0.24807314
## [18,] 3.2829974 -0.77955383 0.37041421 -1.2193173 -0.19356428 0.24807314
## [19,] 3.2829974 -0.77955383 0.37041421 -1.2193173 -0.19356428 0.24807314
## [20,] 3.2829974 -0.77955383 0.37041421 -1.2193173 -0.19356428 0.24807314

I fit a multiple regression equation to the data and display the first 6 coefficients for a rough comparison.
lm_coef <- lm(Y ~ X)$coef
lm_coef[1:6] %>% print(digits = 8)

## (Intercept) X1 X2 X3 X4 X5
## 3.28299744 -0.77955383 0.37041421 -1.21931735 -0.19356428 0.24807314

It looks like we have a “good” approximation of the multiple regression coefficients by the third iteration.
While I am only viewing 6 of the 101 coefficients to be estimated, it seems likely that convergence happens to
a high degree of precision somewhere around the 15th iteration. One potential (better) way of determining
how ‘close’ these estimates are to the multiple regression estimates is shown below.

Parameter Distance:

To quantify how ‘close’ the parameters are to the multiple regression coefficients, I remembered the ‘parameter
distance’ metric (see my solutions for chapter 6, question 10)g)). This seems reasonable to use again here; all
the variables and corresponding parameter estimates are on the same-ish scale (the data was sampled from
N (0, 1)):

For each of the k iterations, I calculate the ‘parameter distance’ which I have denoted by dk. I have modified
the formula slightly from the chapter 6 solutions to:

• Include the intercept
• Calculate the distance between the backfitting coefficients ˆβj(k) and the multiple regression coefficients
β̂mj (which do not change)

dk =

√√√√ p∑
j=0

(
β̂j(k) − β̂mj

)2

I produce a plot of dk by iteration:
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param_dist <- c()

for (k in 1:50) {
param_dist[k] <- sqrt(sum((beta_matrix[k, ] - lm_coef)^2))

}

data.frame(k = 1:50, param_dist = param_dist) %>%
ggplot(aes(x = k, y = param_dist)) +
geom_line(col = "grey20") +
geom_point(col = "steelblue") +
scale_x_continuous(limits = c(1, 50), breaks = seq(0, 50, 10)) +
labs(title = "Parameter Distance",

subtitle = "Backfitted vs Multiple Regression, by Iteration",
x = "Iteration",
y = "Parameter Distance")
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Perhaps a more useful way of displaying this graph is with the y axis on a log10 scale, where we can see the
coefficients from the repeated simple linear regressions (backfitting) get very close to those given by multiple
regression very quickly, and continue to converge to the multiple regression values with each iteration:
data.frame(k = 1:50, param_dist = param_dist) %>%

ggplot(aes(x = k, y = param_dist)) +
geom_line(col = "grey20") +
geom_point(col = "steelblue") +
scale_x_continuous(limits = c(1, 50), breaks = seq(0, 50, 10)) +
scale_y_continuous(trans = "log10", breaks = 10^seq(1, -14, -2)) +
labs(title = "Parameter Distance",
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subtitle = "Backfitted vs Multiple Regression, by Iteration",
x = "Iteration",
y = "Parameter Distance")
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I presume the relatively flat line after iteration 25 is due to numeric limitations in R.

Exam STK2100 2017: Exercise 1
See https://www.uio.no/studier/emner/matnat/math/STK2100/oppgaver/STK2100_2017_fasit.pdf. It is
in Norwegian, so if you you’re not Norwegian, I would recommend to use Google Translate on the text, while
the math is universal.
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