STK2100: Solutions Week 9

Lars H. B. Olsen

10.03.2021

Textbook

Exercise 5.9

We are working with the following linear discriminant function: dy(z) = log(my) — S S~y + 2TS 1y,
for k=1,2,..., K. Let K =2 and assume equal prior probabilities m; = ms = 0.5. We want to show that
d1(z) > da(z) also can be written as (u1 — p2) TS (z — p) > 0, where = (1 + p2). We have that

dy(z >d2()
di(x) — da(z

)

) >
[log(m1) — *ul 137+ 2787] — [log(ma) — *Nz 23 e+ TS o] >0

]

1 1
[—5;112 Y 4272~ u1]+[2 Iy =Ly — 2T s >0

1
[—5m S m +2" S] + [35 e —aTS] —

a8y — 28 g — [P u1+2u12 uz} |:2:u22 N2+2M1Z uz]>0

1
i S e Mlz Y2 >0

2 2

_ _ 1 1 1
pIe=le — ple 1:1:[Ty= u1+2u12 }1,2:|+|:2 I'y= u2+2u22 u1]>0
P 95*#52711’*HlTE*l(%[MJruz])JFHzE Y3l + p2]) >0
S e — s S e = S e+ g X > 0
(ui —pa) S (@ —p) >0
(11— p2)"27 @ — p) >0,

which was what we were asked to show.

Exercise 5.10

We are asked to assume p = 1 and that Y ., x; = 0. Then the simple linear regression model takes the
form y; = By + Bixz; + €;, so y = X + ¢, see section 5.4. Furthermore, assume that the K = 2 and that
the two classes ‘Zero’ and ‘one’; are of equal size. In total, we have n observations. From this we get that

XTX = 2| and XTy = n} , where n; is the number of observations in class 1 and fi; is
0 Zl 1T nifi

ny/n

nifin/ Y a7

We then get the boundary ni/n + anm“’ x > 1/2. Since we have that the two classes are of equal size,
=171

we know that ny/n = 1/2, thus we can subtract —1/2 from both sides of the inequality. This is the reason

defined as in the book. Then B = [

for why the exercise states show also that this statement does not hold if classes have different numbers of
observations. We then have that z:”,}“ L_x > 0, which is equivalent to x > 0.

Cox?
i=1"1

From the previous exercise, we see that the threshold value between the two classes is

no ni

1, . 1 1 &
$=M=§(M0+u1):m(z z; + Z $z‘)zgzﬂﬂi=07
0 i=1

i:ci=1

as then do(z) = dy(z). Here ¢; represent the class of the ith observation, and we have used the assumptions
above of equal size ng = ny = n/2 and that ZLI x; = 0. The two threshold values coincide and we are done
with the exercise.

Exercise 5.10

ISLR

Include necessary packages:

library(tidyverse)

library(ISLR) # 'Weekly' data

library(caret) # train(), confusionMatriz()

library(MASS) # lda(), qda(), “Boston data

select <- dplyr::select # MASS 'select' clashing with dplyr
library(class) # knn()

library(gridExtra)

theme_set (theme_light())

Exercise 4.9 Odds vs Probability
This problem has to do with odds.

Here’s a quick bonus graph showing the relationship between odds (£ gj&)) and probability (p(X)), where
we can see:

e Odds = 1 when p(X) = 0.5:

The graph has been truncated at y = 20, since lim,,_,;- £ = 00

1-p
data.frame(prob = seq(0, 0.99, 0.01)) %>%

mutate(odds = prob / (1 - prob)) %>%
ggplot(aes(x = prob, y = odds)) +
geom_point () +
geom_line() +
geom_vline(xintercept = 0.5, col = "grey30") +
geom_hline(yintercept = 1, col = "grey30") +
coord_cartesian(ylim = c(0, 20)) +
labs(x = "p",

y = "Odds: p / (1 - p",

title = "Odds vs Probability Relationship")

Odds vs Probability Relationship

20
15
2
|
Z
~
S 10
y
o
=)
o
5
0
0.00 0.25 0.50 0.75 1.00
p

(a) Odds — Probability
Q: On average, what fraction of people with an odds of 0.37 of defaulting on their credit card payment will in
fact default?

A:

p(X) _
= p(X) 0.37
= p(X) =0.37—0.37 - p(X)
0.37

= p(X) = 137

round(0.37/1.37, 3)

[1] 0.27

(b) Probability — Odds
Q: Suppose that an individual has a 16% chance of defaulting on her credit card payment. What are the odds
that she will default?

A:

p(X) 0.16
1-p(X) 1-0.16

p(X)=0.16 =

round(0.16/0.84, 3)

[1] 0.19

Exercise 4.10 The Weekly Dataset (Logistic, LDA, QDA, KNN)

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is
similar in nature to the Smarket data from this chapter’s lab, except that it contains 1,089 weekly returns
for 21 years, from the beginning of 1990 to the end of 2010.

glimpse (Weekly)

Rows: 1,089

Columns: 9

$ Year <dbl> 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 199...
$ Lagi <dbl> 0.816, -0.270, -2.576, 3.514, 0.712, 1.178, -1.372, 0.807...
$ Lag2 <dbl> 1.572, 0.816, -0.270, -2.576, 3.514, 0.712, 1.178, -1.372...
$ Lag3 <dbl> -3.936, 1.572, 0.816, -0.270, -2.576, 3.514, 0.712, 1.178...
$ Lagd <dbl> -0.229, -3.936, 1.572, 0.816, -0.270, -2.576, 3.514, 0.71...
$ Lagh <dbl> -3.484, -0.229, -3.936, 1.572, 0.816, -0.270, -2.576, 3.5...
$ Volume <dbl> 0.1549760, 0.1485740, 0.1598375, 0.1616300, 0.1537280, O....
$ Today <dbl> -0.270, -2.576, 3.514, 0.712, 1.178, -1.372, 0.807, 0.041...
$ Direction <fct> Down, Down, Up, Up, Up, Down, Up, Up, Up, Down, Down, Up,...

The variables are:

Year: The year that the observation was recorded

Lagl: Percentage return for previous week

Lag2: Percentage return for 2 weeks previous

Lag3: Percentage return for 3 weeks previous

Lagd: Percentage return for 4 weeks previous

Lagh: Percentage return for 5 weeks previous

Volume: Volume of shares traded (average number of daily shares traded in billions)

Today: Percentage return for this week

Direction: A factor with levels Down and Up indicating whether the market had a positive or negative
return on a given week

(a) Data Summary

Q: Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

A:

An initial glance at the numeric variables of the dataset:

pairs(Weekly[,-91)

i

-15 0 -15 0 -15 0 -15 0
=ik Ik it At ik sl
o oo | T [[A e [
R [[0z | I [[) A
. P (A [] [0 | [[) W
e P A | Laga | £ I > A

2 ol Lo ~ a 2 o F v
. Ty - Ay P A b | Lags | (] b R
A E o
T T T°7

o]
E o aE S] o 3% -
o
P (@) Nd
o W [A A | 4 | Today
T e TTETTT . TTTITT . T T 7
1990 2005 -15 0 -15 0 0O 4 8
abs(cor (Weekly[,-91))
Year Lagl Lag2 Lag3 Lagd Lagh
Year 1.00000000 0.032289274 0.03339001 0.03000649 0.031127923 0.030519101
Lagl 0.03228927 1.000000000 0.07485305 0.05863568 0.071273876 0.008183096
Lag?2 0.03339001 0.074853051 1.00000000 0.07572091 0.058381535 0.072499482
Lag3d 0.03000649 0.058635682 0.07572091 1.00000000 0.075395865 0.060657175
Lagd 0.03112792 0.071273876 0.05838153 0.07539587 1.000000000 0.075675027
Lagh 0.03051910 0.008183096 0.07249948 0.06065717 0.075675027 1.000000000
Volume 0.84194162 0.064951313 0.08551314 0.06928771 0.061074617 0.058517414
Today 0.03245989 0.075031842 0.05916672 0.07124364 0.007825873 0.011012698
Volume Today
Year 0.84194162 0.032459894
Lagl 0.06495131 0.075031842
Lag?2 0.08551314 0.059166717
Lag3 0.06928771 0.071243639
Lagd 0.06107462 0.007825873
Lagbh 0.05851741 0.011012698
Volume 1.00000000 0.033077783
Today 0.03307778 1.000000000
As we would expect with stock market data, there are no obvious strong relationships between the Lag

variables. However, there do appear to be some interesting trends over time. I create the Week variable below,
allowing for easier plotting of trends, since there is a chronology to the rows that is not shown fully through
the Year variable.

I first do a quick sense-check that the rows are in the correct order, based on the definition of Today and
Lagl:

Weekly 7%>%

filter(lead(Lagl) != Today) %>%

nrow()

[1]1 ©

Since there are no rows out of order, the dataset appears to be correctly ordered in ascending weeks, so I
create Week (basically a row counter):

Weekly$Week <- 1:nrow(Weekly)

Looking at Volume over time, there has been a significant increase in the volume of shares traded since the
90’s. This appears to have peaked around 2009, starting to decrease in 2010. it would be interesting to see
the S&P 500 stats since then.

year_breaks <- Weekly %>’
group_by (Year) %>/
summarize (Week = min(Week))

ggplot (Weekly, aes(x = Week, y = Volume)) +
geom_line() +
geom_smooth() +
scale_x_continuous(breaks = year_breaks$Week,
minor_breaks = NULL,
labels = year_breaks$Year) +
labs(title = "Average Daily Shares Traded vs Time",
x = "Time") +
theme_light ()

Average Daily Shares Traded vs Time

7.5

Volume

2.5

0.0
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Time
Here is Direction over time, which is less interesting. There appear to only be 4 years in which >= 50% of
the weeks didn’t see a positive return (2000, 2001, 2002, 2008).

ggplot (Weekly, aes(x = Year, fill = Direction)) +
geom_bar(position = "fill") +
geom_hline(yintercept = 0.5, col = "grey45") +
scale_x_continuous(breaks = seq(1990, 2010),

minor_breaks = NULL) +
scale_y_continuous(labels = scales::percent_format()) +
theme_light() +
theme (axis.title.y = element_blank(),
legend.position = "bottom") +

ggtitle("’, of Up/Down Weeks vs Time")

% of Up/Down Weeks vs Time

100% -

75% -

50% -

25% -|

0% -

1090 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Year

Direction [pown [l up

The split of the weeks into Down & Up can be seen in the table below. We could get a classifier with 55.56%
accuracy simply by predicting the S&P 500 return will be positive every week.

prop.table(table(Weekly$Direction))

##
Down Up
0.4444444 0.5555556

We can also see that the market seems to go through periods of higher variance/instability. Crashes
(e.g. Sept. 2008) stand out here.

ggplot (Weekly, aes(x = Week, y = Today / 100)) +
geom_line() +
scale_x_continuous(breaks = year_breaks$Week,
minor_breaks = NULL,
labels = year_breaks$Year) +
scale_y_continuous(labels = scales::percent_format(), breaks = seq(-0.2, 0.2, 0.05)) +
geom_hline(yintercept = 0, col = "greyb5") +
theme_light() +
labs(title = "Weekly Percentage Return vs Time",
x = "Time",
y = "Percentage Return")

Weekly Percentage Return vs Time

mm eatl hTm | u Mlh hwﬂl

—
—

0.0% NW]lﬂm L) [H'" Tr” " ' M'Imlﬂ]r'q [" lmﬂ l

-5.0%

—=
-1ﬁ!!
=
:==5
_E
'%E
—-:
é_
—=_.
———
——
p—
_—

Percentage Return

-10.0%

-15.0%

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Time

(b) Logistic Regression (predict market Direction)

Q: Use the full data set to perform a logistic regression with Direction as the response and the five lag variables
plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to
be statistically significant? If so, which ones?

A:
Lag2 appears to be the only statistically significant predictor:

glm_dir <- glm(Direction ~ Lagl + Lag2 + Lag3 + Lag4 + Lagb + Volume,
data = Weekly,
family = "binomial")

summary (glm_dir)

##

Call:

glm(formula = Direction ~ Lagl + Lag2 + Lag3 + Lagd4 + Lagb +
Volume, family = "binomial", data = Weekly)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6949 -1.2565 0.9913 1.0849 1.4579

##

Coefficients:

#it Estimate Std. Error z value Pr(>lzl)

(Intercept) 0.26686 0.08593 3.106 0.0019 *x

Lagl -0.04127 0.02641 -1.563 0.1181

Lag2 0.05844 0.02686 2.175 0.0296 =*

Lag3 -0.01606 0.02666 -0.602 0.5469

Lagd -0.02779 0.02646 -1.050 0.2937

Lagbh -0.01447 0.02638 -0.549 0.5833

Volume -0.02274 0.03690 -0.616 0.5377

-—-

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

#i#

(Dispersion parameter for binomial family taken to be 1)

##

#i# Null deviance: 1496.2 on 1088 degrees of freedom

Residual deviance: 1486.4 on 1082 degrees of freedom

AIC: 1500.4

#i#

Number of Fisher Scoring iteratiomns: 4

Note that the output from the Z-statistic (z value) is calculated the same as with the T-test in linear regression:
[} .

Z = Wjﬁ')’ and a large absolute value indicates evidence against the null hypothesis Hy : 5; = 0 (again, the

same).
(c) Confusion Matrix

Q: Compute the confusion matriz and overall fraction of correct predictions. FExplain what the confusion
matriz is telling you about the types of mistakes made by logistic regression.

A:

The confusion matrix is shown below. I use caret: :confusionMatrix (), as it has various confusion matrix
statistics built in to its output.

predicted <- factor(ifelse(predict(glm_dir, type = "response") < 0.5, "Down", "Up"))
confusionMatrix(predicted, Weekly$Direction, positive = "Up")

Confusion Matrix and Statistics

##

Reference

Prediction Down Up

Down 54 48

Up 430 557

##

Accuracy : 0.5611
95% CI : (0.531, 0.5908)
No Information Rate : 0.5556
#it P-Value [Acc > NIR] : 0.369
#it

Kappa : 0.035
##

Mcnemar's Test P-Value : <2e-16
#i#

Sensitivity : 0.9207
#it Specificity : 0.1116
Pos Pred Value : 0.5643
Neg Pred Value : 0.5294
Prevalence : 0.5556
Detection Rate : 0.5115
Detection Prevalence : 0.9063
Balanced Accuracy : 0.5161
##

'Positive' Class : Up

#i#

This is just over the baseline accuracy (55.56%) achieved by a naive classifier (that predicts Up every time).

In fact, this is almost the strategy of the logistic regression model:

prop.table(table(predicted))

predicted
Down Up
0.09366391 0.90633609

This is reflected in the very poor specificity (it does not predict the negative class well).

Note also that we are dealing with training accuracy here, so this marginal accuracy improvement over the
baseline is not interesting.

(d) train and test - Logistic Regression

Q: Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the
only predictor. Compute the confusion matriz and the overall fraction of correct predictions for the held out
data (that is, the data from 2009 and 2010).

A:
I create train and test, corresponding to the two time periods given in the question.

The confusion matrix is for the test predictions this time.

train <- Weekly[Weekly$Year <= 2008, 1]
test <- Weekly[Weekly$Year > 2008,]

glm_dir <- glm(Direction ~ Lag2,
data = train,
family = "binomial")

predicted <- factor(ifelse(predict(glm_dir, newdata = test, type = "response')
< 05, “DOWII“, "Up”))

confusionMatrix(predicted, test$Direction, positive = "Up")

Confusion Matrix and Statistics

##

Reference

Prediction Down Up

#it Down 9 b5

Up 34 56

##

Accuracy : 0.625

95% CI : (0.5247, 0.718)
No Information Rate : 0.5865
#t P-Value [Acc > NIR] : 0.2439
##

Kappa : 0.1414
##

Mcnemar's Test P-Value : 7.34e-06
##

Sensitivity : 0.9180
Specificity : 0.2093
Pos Pred Value : 0.6222
Neg Pred Value : 0.6429
#it Prevalence : 0.5865

10

Detection Rate : 0.5385
Detection Prevalence : 0.8654

Balanced Accuracy : 0.5637
##

'Positive' Class : Up

#i#

Here we get an Accuracy of 0.625.

The confusionMatrix () function provides a lot of other useful statistics. For example, No Information
Rate : 0.5865 tells us that the largest class (Up) is 58.65% of the test observations, and hence this is our
baseline for a classifier.

Clearly Accuracy : 0.625 > 0.5865, which is positive. However, our test dataset is relatively small so this
might not be a meaningful improvement.

We are provided with a p-value for a one-sided test to see whether the accuracy is better than the “no
information rate”. P-Value [Acc > NIR] : 0.2439 > 0.05 = no significant evidence that our classifier
is better than the baseline strategy. Predicting stock movements is hard - who would’ve thought?

(e) train and test - LDA

Q: Repeat (d) using LDA.

A:

lda_dir <- lda(Direction ~ Lag2, data = train)

predicted_lda <- predict(lda_dir, newdata = test)
confusionMatrix(data = predicted_lda$class,
reference = test$Direction,

positive = "Up")

Confusion Matrix and Statistics

##

Reference

Prediction Down Up

Down 9 b5

Up 34 56

##

Accuracy : 0.625
95% CI : (0.5247, 0.718)
No Information Rate : 0.5865
#t P-Value [Acc > NIR] : 0.2439
##

Kappa : 0.1414
##

Mcnemar's Test P-Value : 7.34e-06
#it

Sensitivity : 0.9180
Specificity : 0.2093
Pos Pred Value : 0.6222
Neg Pred Value : 0.6429
Prevalence : 0.5865
Detection Rate : 0.5385

11

Detection Prevalence : 0.8654

#i# Balanced Accuracy : 0.5637
##

'Positive' Class : Up

##

Here we get an Accuracy of 0.625. Note that, as before, we have P-Value [Acc > NIR] : 0.2439 > 0.05,
so whilst the accuracy of the classifier is 0.625 > 0.5865, the test sample size is not large enough for this
increase over the baseline to be meaningful.

predict.lda()$posterior gives a data frame of probability predictions, with one column per response class.
predict.lda()$classgives the class prediction for each observation (the class with the greatest probability).
I check this below:

identical(as.character(predicted_lda$class),
as.character(ifelse(predicted_lda$posterior[,2] < 0.5, "Down", "Up")))

[1] TRUE
(f) train and test - QDA
Q: Repeat (d) using QDA.

A:
qda_dir <- gda(Direction ~ Lag2, data = train)

predicted_qgda <- predict(qda_dir, newdata = test)
confusionMatrix(data = predicted_qda$class,
reference = test$Direction,

positive = "Up")

Confusion Matrix and Statistics

##

Reference

Prediction Down Up

Down 0 O

Up 43 61

#it

Accuracy : 0.5865
95% CI : (0.4858, 0.6823)
No Information Rate : 0.5865
P-Value [Acc > NIR] : 0.5419
##

Kappa : 0

##

Mcnemar's Test P-Value : 1.504e-10
##

Sensitivity : 1.0000
Specificity : 0.0000
Pos Pred Value : 0.5865
Neg Pred Value : NaN
Prevalence : 0.5865
Detection Rate : 0.5865

#i Detection Prevalence : 1.0000

12

Balanced Accuracy : 0.5000
##

'Positive' Class : Up

##

Here we get an Accuracy of 0.5865.

Note that the QDA classifier just predicts Up for every test observation - it behaves identically to the naive
classifier on this dataset, with a sensitivity of 1 and a specificity of 0.

(g) train and test - KNN (K = 1)
Q: Repeat (d) using KNN with K = 1.
A:

Usually as a pre-processing step for KNN (with multiple predictors over different scales), we would want to
standardize the predictors (2, = “2*) so that each 2., Will have a mean of 0 and standard deviation of 1.
In this case, however, there is only 1 predictor (Lag2), so the nearest neighbour would not be effected by this.

Note also that there is some element of randomness with the KNN classifier. Take the following test
observation that requires prediction:

test[100, "Lag2"]

[1] 0.043
test[75, "Lag2"] # another one here

Notice that there are two train observations of identical distance (w.r.t Lag2), but both have different
Direction values:

train[c(10, 808), c("Lag2", "Direction")]

Lag2 Direction
10 0.041 Down
808 0.041 Up

In this case, the KNN probability will be 0.5:

set.seed(1)
predicted_knn <- knn(train = data.frame(Lag2 = train$Lag2),
test = data.frame(Lag2 = test$Lag2),
cl = train$Direction,
k=1
prob

o~

T)
attr(predicted_knn, "prob")[100]

[1] 0.5

However, the classifier must make a prediction, which will just be chosen at random:

predicted_knn[100]

[1] Down
Levels: Down Up

See the confusion matrix below:

13

confusionMatrix(data = predicted_knn,
reference = test$Direction,
positive = "Up")

Confusion Matrix and Statistics

##

Reference

Prediction Down Up

Down 21 30

Up 22 31

##

Accuracy : 0.5

95% CI : (0.4003, 0.5997)
No Information Rate : 0.5865
P-Value [Acc > NIR] : 0.9700
##

Kappa : -0.0033
#i#

Mcnemar's Test P-Value : 0.3317
##

Sensitivity : 0.5082
Specificity : 0.4884
Pos Pred Value : 0.5849
Neg Pred Value : 0.4118
Prevalence : 0.5865
Detection Rate : 0.2981
Detection Prevalence : 0.5096
Balanced Accuracy : 0.4983
##

'Positive' Class : Up

##

Here we get an accuracy of 0.5, which is again worse than the baseline.

(h) Best Performing Classifier?
Q: Which of these methods appears to provide the best results on this data?
A:

Taking the target metric as the accuracy of the classifier: LDA & Logistic Regression get the same test
accuracy of 0.625, so these two are tied.

(i) Experimenting (combined predictors, interactions, transformations, etc.)

Q: Ezperiment with different combinations of predictors, including possible transformations and interactions,
for each of the methods. Report the variables, method, and associated confusion matriz that appears to provide
the best results on the held out data. Note that you should also experiment with values for K in the KNN
classifier.

A:
KNN - selecting best K (using cross-validation):
train$Today <- NULL

ctrl <- trainControl(method = "repeatedcv",

14

number = 5,
repeats = 5)

set.seed(111)

knn_train <- train(y = train$Direction,
x = train[,-8],
method = "knn",
metric = "Accuracy",
preProcess = c("center", "scale"),
tuneGrid = expand.grid(k = seq(1, 50, 2)),
trControl = ctrl)

caret: :varImp(knn_train)

ROC curve variable importance

##

Importance
Lagl 100.000
Lag2 77.256
Lagb 64.309
Year 45.659
Volume 43.735
Week 42.513
Lagd 4.578
Lag3 0.000

knn_train

k-Nearest Neighbors

#i#

985 samples

8 predictor

2 classes: 'Down', 'Up'

#i#

Pre-processing: centered (8), scaled (8)

Resampling: Cross-Validated (5 fold, repeated 5 times)
Summary of sample sizes: 788, 788, 788, 788, 788, 787,
Resampling results across tuning parameters:

##

k Accuracy Kappa

1 0.4947996 -0.020756148
3 0.5232477 0.031373990
5 0.5230292 0.028769372
#i# 7 0.5372435 0.053353378
#i# 9 0.5372415 0.049612758
11 0.5343834 0.040819116
13 0.5346081 0.037598994
15 0.5368437 0.040363712
#i# 17 0.5317675 0.026161027
19 0.5301555 0.021608137
21 0.5370622 0.033488872
23 0.5330064 0.024861594
25 0.5401182 0.036317004
27 0.5376693 0.029998090

15

29 0.5321890 0.015868622
31 0.5338310 0.018687256
33 0.5360563 0.021431639
35 0.5322138 0.012669022
37 0.5283538 0.002535516
39 0.5330239 0.011432961
41 0.5289589 0.002400751
43 0.5295618 0.003081904
45 0.5299700 0.003587628
47 0.5303854 0.003745293
49 0.5320056 0.005552184
#

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 25.

ggplot (knn_train) +
geom_smooth() +
theme_light() +
scale_y_continuous(labels = scales::percent_format()) +
ggtitle("KNN - 'K' Selection (5-repeated 5-fold cross-validation)")

KNN - 'K' Selection (5-repeated 5-fold cross—validation)

54.0% /\
A

V

53.0%

52.0%

51.0%

Accuracy (Repeated Cross—Validation)

50.0%

0 10 20 30 40 50
#Neighbors

caret automatically chooses the best value for k. Evaluating the performance of this new model on test:

knn_pred <- predict(knn_train, newdata = test)
confusionMatrix(data = knn_pred,

reference = test$Direction,
positive = "Up")

16

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

It appears that performance increased compared to the K = 1 version. However, we are still below the
performance of the baseline approach. Similar (worse) results can be seen by adding other predictors, so I
leave KNN for now in favour of other methods.

Confusion Matrix and Statistics

Reference
Prediction Down Up
Down 19 20
Up 24 41
Accuracy :
95% CI
No Information Rate :
P-Value [Acc > NIR]
Kappa :
Mcnemar's Test P-Value :
Sensitivity :
Specificity :

Pos Pred Value :

Neg Pred Value :
Prevalence :
Detection Rate :
Detection Prevalence :
Balanced Accuracy :

'Positive' Class :

New Features:

Since logistic regression produced one of the best classifiers so far, it could be appropriate to call the
best_predictor () function I wrote in previous chapters (which applies logistic regression for a categorical
response variable), in the hopes that a potentially useful transformation might be identified.

best_predictor <- function(dataframe, response) {

if (sum(sapply(dataframe, function(x) {is.numeric(x) | is.factor(x)}))

< ncol (dataframe)) {

stop("Make sure that all variables are of class numeric/factor!")

3

pre-allocate wvectors
varname <- c()

vartype <- c()

R2 <- c(Q

R2_log <- c()

R2_quad <- c()

AIC <- c(Q)

AIC_log <- c()

AIC_quad <- c()

y <- dataframe[,response]

0.

5769

(0.4761, 0.6732)

0.
: 0.

O O O O O o oo

S

5865
6193

.1156

.6511

.6721
.4419
.6308
L4872
.5865
.3942
.6250
.5570

17

NUMERIC RESPONSE # # # #
if (is.numeric(y)) {

for (i in 1:ncol(dataframe)) {

x <- dataframel ,i]
varname [i] <- names(dataframe) [i]

if (class(x) %in), c("numeric", "integer")) {
vartype[i] <- "numeric"
} else {

vartype[i] <- '"categorical"

}
if (!identical(y, x)) {

linear: y ~ x
R2[i] <- summary(lm(y ~ x))$r.squared

log-transform: y ~ log(z)
if (is.numeric(x)) {
if (min(x) <= 0) {
if y ~ log(z) for min(z) <= 0, do y ~ log(z + abs(min(z)) + 1)
R2_logl[i] <- summary(lm(y ~ log(x + abs(min(x)) + 1)))$r.squared
} else {
R2_log[i] <- summary(lm(y ~ log(x)))$r.squared
}
} else {
R2_log[i] <- NA
}

quadratic: y ~ ¢ + T2
if (is.numeric(x)) {
R2_quad[i] <- summary(lm(y ~ x + I(x72)))$r.squared
} else {
R2_quad[i] <- NA
}

} else {
R2[i] <- NA
R2_logl[i] <- NA
R2_quad[i] <- NA
}
}

print(paste("Response variable:", response))

data.frame(varname,
vartype,
R2 = round(R2, 3),
R2_log = round(R2_log, 3),
R2_quad = round(R2_quad, 3)) %>/
mutate (max_R2 = pmax(R2, R2_log, R2_quad, na.rm = T)) %>%

18

arrange (desc(max_R2))

CATEGORICAL RESPONSE # # # #
} else {

for (i in 1:ncol(dataframe)) {

x <- dataframel[,i]
varname[i] <- names(dataframe) [i]

if (class(x) %in) c("numeric", "integer")) {
vartype[i] <- "numeric"

} else {
vartypel[i] <- "categorical"

}
if (!identical(y, x)) {

linear: y ~ =
AIC[i] <- summary(glm(y ~ x, family = "binomial"))$aic

log-transform: y ~ log(z)
if (is.numeric(x)) {
if (min(x) <= 0) {
4f y ~ log(z) for min(z) <= 0, do y ~ log(z + abs(min(z)) + 1)
AIC_log[i] <- summary(glm(y ~ log(x + abs(min(x)) + 1),

family = "binomial"))$aic
} else {
AIC_log[i] <- summary(glm(y ~ log(x), family = "binomial"))$aic
}
} else {
AIC_logl[i] <- NA

}

quadratic: y ~ x + 72
if (is.numeric(x)) {
AIC_quad[i] <- summary(glm(y ~ x + I(x"2), family = "binomial"))$aic
} else {
AIC_quad[i] <- NA
}

} else {
AIC[i] <- NA
AIC_ logli] <- NA
AIC_quad[i] <- NA
}
}

print(paste("Response variable:", response))

data.frame(varname,
vartype,

19

AIC = round(AIC, 3),
AIC_log = round(AIC_log, 3),
AIC_quad = round(AIC_quad, 3)) %>%
mutate (min_AIC = pmin(AIC, AIC_log, AIC_quad, na.rm = T)) %>%
arrange (min_AIC)
}
}

However, due to the nature of what we are trying to predict, along with the relatively small sample size, it
seems highly likely that the the appeared usefulness of any transformations will be due to overfitting to the
training data.

To illustrate this, I call best_predictor(train, "Direction"), but I also add 10 noise variables (junk_1,
.., junk_10), and we can see that it’s certainly not clear that any of the variables are useful at all, as the
two best-performing variables are random A/ (0, 1) variables:

train$junk_1 <- rnorm(nrow(train))
train$junk_2 <- runif (nrow(train))
train$junk_3 <- factor(as.numeric(rnorm(nrow(train)) > 0))
train$junk_4 <- rnorm(nrow(train))
train$junk_5 <- runif (arow(train))
train$junk_6 <- factor(as.numeric(rnorm(nrow(train)) > 0))
train$junk_7 <- rnorm(nrow(train))
train$junk_8 <- runif (nrow(train))
train$junk_9 <- factor(as.numeric(rnorm(nrow(train)) > 0))
train$junk_10 <- rnorm(nrow(train))

best_predictor(train, "Direction")

[1] "Response variable: Direction"

varname vartype AIC AIC_log AIC_quad min_AIC
1 Lagl numeric 1354.446 1354.199 1356.442 1354.199
2 Lag2 numeric 1354.543 1355.148 1355.435 1354.543
3 junk_6 categorical 1355.795 NA NA 1355.795
4 junk_9 categorical 1356.462 NA NA 1356.462
5 Volume numeric 1356.838 1356.751 1358.833 1356.751
6 junk_4 numeric 1357.707 1358.426 1356.864 1356.864
7 Year numeric 1357.111 1357.112 1358.772 1357.111
8 Week numeric 1357.260 1358.273 1359.076 1357.260
9 junk_10 numeric 1357.319 1357.314 1359.128 1357.314
10 junk_2 numeric 1357.358 1357.721 1359.071 1357.358
11 Lagh numeric 1357.365 1358.527 1358.188 1357.365
12 junk_7 numeric 1357.460 1357.617 1359.344 1357.460
13 junk_5 numeric 1358.566 1357.927 1359.136 1357.927
14 junk_1 numeric 1358.008 1357.938 1359.327 1357.938
15 junk_8 numeric 1357.945 1358.487 1359.603 1357.945
16 Lag3 numeric 1358.354 1358.038 1360.286 1358.038
17 Lag4 numeric 1358.497 1358.685 1359.007 1358.497
18 junk_3 categorical 1358.700 NA NA 1358.700
19 Direction categorical NA NA NA NA

While I don’t think standard transformations of the current features will be fruitful, I have a few ideas for
features/modifications that could be useful:

 Interaction between Lagl & Lag2 (the two predictors most likely to be useful)

20

o Lag_avg_abs - The average absolute value of Lagl to Lagh (a measure of the absolute size of recent
market fluctuations - high values mean high-variance periods)

e Lag_pos_cnt - A count of how many of Lagl - Lagh were positive days (has the market trended upwards
recently?)

e Quarter - A factor variable, created by binning the Week variable into the four quarters of the year

o Removing all current predictors aside from Lagl & Lag2 (these are likely more useful than the older
Lag variables)

I make these changes below to both train and test. Here is the resulting train dataset:

train <- train %>
mutate(Lag_avg_abs = abs(Lagl) + abs(Lag2) + abs(Lag3) + abs(Lagd) + abs(Lagb),
Lag_pos_cnt = (Lagl > 0) + (Lag2 > 0) + (Lag3 > 0) + (Lag4 > 0) + (Lagb > 0)) %>%
group_by (Year) %>Y
mutate (Week_of_year
ungroup() %>%
mutate(Week_of_year = case_when(Year == 1990 ~ as.numeric(Week_of_year + 5),
TRUE ~ as.numeric(Week_of_year))) %>%
data appears to start bSwks into 1990
mutate (Quarter = factor(case_when(Week_of_year <= 13 ~ "Q1",
Week_of_year <= 26 ~ "Q2",
Week_of_year <= 39 ~ "(Q3",
TRUE ~ "Q4"))) %>%
select (Direction, Lagl, Lag2, Lag_avg_abs, Lag_pos_cnt, Quarter)

row_number()) %>%

test <- test %>
mutate(Lag_avg_abs = abs(Lagl) + abs(Lag2) + abs(Lag3) + abs(Lag4) + abs(Lagb),
Lag_pos_cnt = (Lagl > 0) + (Lag2 > 0) + (Lag3 > 0) + (Lag4 > 0) + (Lagb > 0)) %>%
group_by (Year) %>Y
mutate (Week_of_year = row_number()) 7%>%
ungroup() %>%
mutate(Quarter = factor(case_when(Week_of_year <= 13 ~ "Q1",
Week_of_year <= 26 ~ "Q2",
Week_of_year <= 39 ~ "Q3",
TRUE ~ "Q4"))) %>%
select(Direction, Lagl, Lag2, Lag_avg_abs, Lag_pos_cnt, Quarter)

glimpse(train)

Rows: 985
Columns: 6

$ Direction <fct> Down, Down, Up, Up, Up, Down, Up, Up, Up, Down, Down, U...
$ Lagl <dbl> 0.816, -0.270, -2.576, 3.514, 0.712, 1.178, -1.372, 0.8...
$ Lag2 <dbl> 1.572, 0.816, -0.270, -2.576, 3.514, 0.712, 1.178, -1.3...
$ Lag_avg_abs <dbl> 10.037, 6.823, 9.170, 8.748, 7.888, 8.250, 9.352, 7.583...
$ Lag_pos_cnt <int> 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3...
$ Quarter <fct> Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q1, Q2, Q2, Q2, Q2, Q2, Q2,...

Here I test the model containing all of these predictors, along with an interaction term between Lagl and
Lag2:
glm_dir_2 <- glm(Direction ~ . + Lagl:Lag?2,

data = train,

family = "binomial")

21

predicted <- factor(ifelse(predict(glm_dir_2, newdata = test, type = "response")
< 0.5, "Down", "Up"))

confusionMatrix(predicted, test$Direction, positive = "Up")

Confusion Matrix and Statistics

##

Reference

Prediction Down Up

Down 18 16

Up 25 45

#i#

Accuracy : 0.6058
95% CI : (0.5051, 0.7002)
No Information Rate : 0.5865
P-Value [Acc > NIR] : 0.3847
#i#

#i# Kappa : 0.1613
##

Mcnemar's Test P-Value : 0.2115
##

Sensitivity : 0.7377
Specificity : 0.4186
Pos Pred Value : 0.6429
#i# Neg Pred Value : 0.5294
Prevalence : 0.5865
Detection Rate : 0.4327
Detection Prevalence : 0.6731
Balanced Accuracy : 0.5782
##

'Positive' Class : Up

##

The classifier performed better on the test data than the baseline approach with an accuracy of 60.58%,
but this is slightly worse than the simple LDA & Logistic classifiers which scored 62.5%. Due to the small
sample size, I am skeptical as to whether any of these classifiers would continue to perform above the baseline
for data beyond 2010.

22

	Textbook
	Exercise 5.9
	Exercise 5.10
	Exercise 5.10

	ISLR
	Exercise 4.9 Odds vs Probability
	(a) Odds \rightarrow Probability
	(b) Probability \rightarrow Odds

	Exercise 4.10 The Weekly Dataset (Logistic, LDA, QDA, KNN)
	(a) Data Summary
	(b) Logistic Regression (predict market Direction)
	(c) Confusion Matrix
	(d) train and test - Logistic Regression
	(e) train and test - LDA
	(f) train and test - QDA
	(g) train and test - KNN (K = 1)

	(h) Best Performing Classifier?
	(i) Experimenting (combined predictors, interactions, transformations, etc.)

