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Suggested solutions

Problem 1

(a) If we have a separate validation set we can get an unbiased estimate of the prediction
error. If we had used the training data to also estimate the error, we would have got
a too optimistic measure.

However, when dividing the data into two, we reduce the training set, making
estimation of the model/parameters less reliable.

The training and validation set should come from the same population. If the
database is structured in some systematic way, taking for instance the first instances
as training could lead to systematic differences between these datasets. Random
division avoids this problem.

(b) We have the classical bias-variance tradeoff in that for low q, the model underfit while
for large q the model overfit, which in both cases lead to worse performance.

Due to that BIC is penalizing model complexity more, it is reasonable that BIC gives
a smaller model.

(c) Since the variables are selected among all possible subsets, not through a sequential
procedure, it can happen that the BIC model is not a subset of the AIC model. This
in particular can happen when there is correlation between the variables.

The correlation is probably also the reason for why the P-value changes so much for
some of the variables.

(Continued on page 2.)
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(d) The GAM procedure is based on splines, which is a special case of basis functions.
Given the basis functions, we have a linear model in the parameters involved, which
makes the machinery for linear regression directly applicable. In particular degrees
of freedom is calculated through trace(S) where S is the matrix defining ŷ = Sy.

From the plot it seems like Room.Board has a linear structure, which also makes
it reasonable that the BIC is lower and the AIC is almost similar to the model with
all variables non-linear. Even though the Expend variable seems to give a very
non-linear structure, the BIC value is actually lower when only considering a linear
term here. This is probably due to that the non-linear part is in a region with very
few observations and the uncertainty is high here.

(e) Due to that neural networks usually are fitted through an optimization routine
with random starting values, you can obtain different results when repeating the
procedure. We clearly see the variability in results for the 20 repetitions.

There seems to be an improvement in increasing the number of hidden nodes to about
140, after which the results seems to be more stable.

It is tempting to choose the model that gave the best validation error. This is
quite reasonable. However, due to that you now have made a model selection on
the validation set, the error rate will be too optimistic. In order to really evaluate
the performance, one should have a separate test set. Further, since more nodes
probably will mean more local modes, the variability in the performance will also
increase with increasing number of nodes and overfitting on the test set can occur.
It might therefore be more robust to choose a somewhat lower number of nodes.

Problem 2

(a) For each applicant we have that they can be accepted (success) or not, a binary
outcome. Assuming the outcomes are independent and all have the same probability
for success (within each college), we then end up with a binomial distribution.

Both the independence and the same probability assumption can be questionable. In
particular, there might be a fixed number of available places, making the probability
of acceptance depend on the number of applicants.

(b) We have

yi − ŷi = N10
i +N11

i − (N01
i +N11

i ) = N10
i −N01

i .

What this essentially means is that although we can make individual misstakes either
way, these are in some sense averaged out when only comparing yi and ŷi. The error
made on the aggregated level will therefore be smaller than when considered at an
individual level.

(c) The main assumption now is independence. In principle this likelihood allows for
different success probabilities at individual level.

(Continued on page 3.)
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Due to that we do not have any individual based covariates, we have p̂ij = h(xi)
where xi are the covariates at college level, but then we end up with p̂ij = p̂i. In
that case,

L̂ =
∏
i

∏
j

p̂
zij
i (1− p̂i)1−zij =

∏
i

p̂
∑

j zij
i (1− p̂i)ni−

∑
j zij =

∏
i

p̂yii (1− p̂i)ni−yi .

(d) Assuming the College data is given as a matrix. We can then repeat each row ni

times. We then make a new response variable z which is equal to 1 for the first yi
repetitions and then equal to 0 for the last ni − yi repetitions.

Since we only have p̂ij = p̂i, all zij within the same college will have the same decision,
either 0 or 1. If all are 0, then also ŷj = 0. If all are 1, then ŷj = nj.

When we use ŷi =
∑

j p̂ij = nip̂i, we are taking the uncertainty about the decision into
account. So we are estimating more directly the expectation of yi, taking uncertainty
in the individual zij into account.

(e) For the given set of covariates, we get that p̂i = 0.7428. In order to get a prediction on
the number of accepted applicants, we have to multiply this number by the number
of applicants, resulting in ŷi = 1233.05, which is very close to the actual value!

Tree classifiers are very easy to interprete. In this case the whole tree only depends
on 3 covariates in a very simple way.

Problem 3

(a) We have that the log-likelihood in this case is given by

` = −N
2

log(2π)− 1

2

N∑
i=1

log(wiσ
2)−

N∑
i=1

1

wiσ2
(yi − β0 −

p∑
j=1

βjxij)
2

and we see that maximizing ` is equivalent to minimizing
∑N

i=1
1
wi

(yi − β0 −∑p
j=1 βjxij)

2

Since W is a diagonal matrix, we get the vector/matrix formulation.

(b) We have

RSS =Y TY − 2βTXTY + βTXTXβ

∂

∂βT
RSS =− 2XTY + 2XTXβ

which when put to zero gives the result.

We have

E[β̂] =E[[XTW−1X]−1XTW−1Y ]

=[XTW−1X]−1XTW−1Xβ = β.

(Continued on page 4.)
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Further, we have

Var[β̂] =Var[[XTW−1X]−1XTW−1Y ]

=[XTW−1X]−1XTW−1σ2WW−1X[XTW−1X]−1

=[XTW−1X]−1σ2.

(c) By dividing by
√
wi and defining ỹi = yi/

√
wi and x̃ij = xij/

√
wi, we obtain

Ỹi = β0
1

wi

+

p∑
j=1

βjx̃ij + ε̃i, ε̃i
iid∼ N(0, σ2)

which then becomes an ordinary linear regression model. The results above the
follow from the general results from linear regression. In particular, if X̃ is the
design matrix for the x̃ij’s and Ỹ is the vector of ỹi’s, we have X̃TX̃ = XTW−1X

and X̃T Ỹ = XTW−1Y .


