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Problem 1
In this exercise we will look at at a dataset frogs where the variable of interest is the
presence of a specific type of frogs at different locations (0/1 variable where 1 corresponds
to presence). There are 9 explanatory variables, all numerical. We denote the data set by
{(yi,xi), i = 1, ..., n}

A fit to a logistic regression model gave the following result:
Co e f f i c i e n t s :

Estimate Std . Error z va lue Pr(>| z | )
( I n t e r c ep t ) −1.635 e+02 2 .153 e+02 −0.759 0.44764
north ing 1 .041 e−02 1 .654 e−02 0 .630 0.52901
ea s t i ng −2.158e−02 1 .268 e−02 −1.702 0.08872
a l t i t u d e 7 .091 e−02 7 .705 e−02 0 .920 0.35745
distance −4.835e−04 2 .060 e−04 −2.347 0.01893
NoOfPools 2 .968 e−02 9 .444 e−03 3 .143 0.00167
NoOfSites 4 .294 e−02 1 .095 e−01 0 .392 0.69482
avra in −4.058e−05 1 .300 e−01 0 .000 0.99975
meanmin 1 .564 e+01 6 .479 e+00 2 .415 0.01574
meanmax 1.708 e+00 6 .809 e+00 0 .251 0.80198

The log-likelihood value for this fit was -97.83.
The following table shows the confusion matrix for the observed yi’s:
yi\ŷi 0 1
0 113 20
1 24 55

(a) Based on the results from the fit for the logistic regression model, is this a model you
find satisfactory? Also include an argument to your answer.

An alternative model also based on logistic regression gave the following result:
Co e f f i c i e n t s :

Estimate Std . Error z va lue Pr(>| z | )
( I n t e r c ep t ) −6.916 e+01 1 .611 e+01 −4.293 1 .76 e−05
ea s t i ng −9.236e−03 4 .479 e−03 −2.062 0.03921
a l t i t u d e 3 .217 e−02 8 .049 e−03 3 .997 6 .41 e−05
distance −5.099e−04 1 .837 e−04 −2.776 0.00550
NoOfPools 2 .969 e−02 9 .091 e−03 3 .266 0.00109
meanmin 8 .916 e+00 2 .030 e+00 4 .391 1 .13 e−05
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with a log-likelihood value of -98.71. The corresponding confusion matrix was in this case

yi\ŷi 0 1
0 112 21
1 24 55

(b) Explain why the log-likelihood value for this new model is lower than for the first
model.

Use these log-likelihood values for making a choice between the two models. Specify
which criterion you use for this choice.

(c) Explain what the P-values in the last column in the two tables mean. Discuss the
actual values given for the two models. Also give a possible explanation to why
some of the P-values are quite different for the same explanatory variable for the two
models.

We will now look at classification trees. The plot below shows an estimated tree based on
5 leaves:

|meanmin < 3.11667

NoOfPools < 71 distance < 1600

altitude < 1295

0 1

0 1

0

The table below gives the confusion matrix obtained in this case:
yi\ŷi 0 1
0 117 16
1 24 55

(d) Explain why a likelihood function for a classification tree can be written in the form

L(θ) =
N∏
i=1

pyii (1− pi)1−yi

where pi = cm for xi ∈ Rm.
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(e) For the specific classification tree we obtained a log-likelihood value equal to -90.21.
What is the number of parameters in this case?

Use this to calculate the AIC value for the classification tree and use this to make
an evaluaton of this model compared to previous models.

Consider now instead cross-validation. The table below give the confusion matrices for
logistic regression with 5 explanatory variables and for the classification tree with 5 leaves.
Here, leave-one-out cross-validation is used.

Logistic regression Classification tree
yi\ŷi 0 1 0 1
0 109 24 100 33
1 24 55 24 55

(f) Explain how the cross-validation method work and also why the table for logistic
regression now is different from the one you saw earlier.

Based on these new confusion matrices, which method would you prefer?

Now look at bagging. The confusion matrices below are based on out-of-bag estimation.
Logistic regression Classification tree

y\ŷ 0 1 0 1
0 109 24 115 18
1 24 55 32 47

Problem 2
Consider now a linear regression model

Y = β0 +

p∑
j=1

βjxj + ε

Assume β = (β0, ..., βp) is estimated by the criterion

β̂ = arg min
β

{
N∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

β2
j

}

(a) What is this method called? Discuss this method compared to ordinary least squares.

(b) Find an explicit expression for β̂. If you make some simplifying assumptions, clearly
state these.

An alternative way of estimating β is through the criterion

β̂ = arg min
β

{
N∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj|

}
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(c) What is this method called? Discuss this method in relation to both ordinary least
squares and the method above.

Below are two plots showing the estimates of β on a prostate cancer example. Relate
the two plots to the two methods discussed above. Also explain how the least squares
estimates can be read from the plot(s).

Elements of Statistical Learning (2nd Ed.) c�Hastie, Tibshirani & Friedman 2009 Chap 3
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(d) In both cases, the penalty variable λ needs to be specified. Discuss methods for doing
that.

Problem 3
In this exercise, you will first be introduced to a problem about traffic related air pollution,
and then you will be asked to interpret a GAM plot.

Particles between 2.5 and 10 micrometers in size are called coarse particles. At or beside
a road in a Norwegian city, there will typically be a lot of road dust containing many coarse
particles, especially in the winter when many cars are fitted with studded tyres (piggdekk).
These particles are typically whirled into the air by the cars. In addition to the road dust
which is re-suspended into the air, the exhaust from the vehicles also gives direct emissions
of coarse particles (in addition to emissions of smaller particles and gases).

A large data set has been analysed to give a description of how the concentration of
coarse particles are related to the traffic volume and meteorological conditions. This data
set consists of 70 000 hourly values of the concentration of coarse particles and correspond-
ing explanatory variables in the period 2001-2009 at Kirkeveien in Oslo. The speed limit
at Kirkeveien is 50 km per hour. The variables used in this analysis includes

• y - the (natural) logarithm of the concentration of coarse particles in the air

• x1 = the number of light vehicles (shorter or equal to 5.5 m) per hour = “trafikkLette”

• x2 = the number of heavy vehicles (longer than 5.5 m) per hour =
“trafikkTunge”
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• x3 = average velocity of the vehicles = “hastighet”

• x4 = temperature in degrees Celsius = “temperatur”

• x5 = accumulated precipitation (in mm) last 4 hours = “regn4time”

• x6 = accumulated precipitation (in mm) last week = “regn1uke”

• other explanatory variables that you can ignore in this exercise

The following generalised additive model (GAM) has been fitted to the data

y = s1(x1) + s2(x2) + s3(x3) + s4(x4) + s5(x5) + s6(x6) + · · ·+ ε.

Here, + . . . mean that also some other explanatory variables are included in the model.
The figure below shows the GAM plot for x1-x6. PM10−PM2.5
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(a) Give a short interpretation of the estimated effect of each of the six explanatory
variables, i.e. describe how they may affect the concentration of coarse particles,
and discuss whether the results are reasonable in light of your understanding of the
physical process of this type of air pollution.
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(b) Until a few years ago, the speed limit at some of the main roads in Oslo was lowered
from 80 km/hour to 60 km/hour during the winter months. Use the GAM plot
above to quantify what effect this intervention might have had on the concentration
on coarse particles near these roads.

Problem 4
Consider the general neural network model (with one hidden layer) given by

zim =f0(α0m +αT
mxi) m = 1, ...,M

ηi =f1(γ0 + γTzi)

yi
ind∼N(ηi, σ

2)

(*)

where ind∼ means that the observations are independent. Here x ∈ Rp while y ∈ R. We
assue that estimation of parameters are based on the least squares measure

∑N
i=1(yi−ηi)2,

perhaps including some regularization term.

(a) Consider first the case where M = 1 and f0(x) = f1(x) = x.

Derive an expression for ηi in this case.

Explain why this corresponds to a linear regression model.

Is it possible to estimate all the parameters involved?

(b) Consider now the case where M > 1 but still with f0(x) = f1(x) = x. Discuss simi-
larities and differences compared to linear regression based on principal components.

(c) We will now consider the more general case where f0(·) is the sigmoid function
(f0(x) = exp(x)/(1 + exp(x))) while f1(·) is still the identify function.

Write down ηi as a function of xi in this case.

Argue why one can use gradient methods for minimizing the least squares measure
with respect to the unknown parameters.

Will you expect some identifiability problems also in this case?

(d) A common way to regularize parameters in neural networks is to introduce a penalty
term so that one minimizes

L(θ) =
N∑
i=1

(yi − ηi)2 + λ

[
q∑

j=1

θ2j

]

where q is the total number of parameters and θj is a specific parameter involved.

Explain why the penalty term is in particular useful for neural networks.
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We will now consider the NASA data set comprising different size NACA 0012 airfoils
at various wind tunnel speeds and angles of attack. The span of the airfoil and the observer
position were the same in all of the experiments.

The data, which is downloaded from https://archive.ics.uci.edu/ml/datasets/
Airfoil+Self-Noise has N = 1503 instances and 5 input variables:

• Frequency, in Hertzs.

• Angle of attack, in degrees.

• Chord length, in meters.

• Free-stream velocity, in meters per second.

• Suction side displacement thickness, in meters.

The only output is:

• Scaled sound pressure level, in decibels.

A subset of ntr = is used for fitting a model, the remaining data are used for evaluation.
The plot below shows results for fitting neural networks with one hidden layer and

varying number of hidden nodes. For each number, the procedure is repeated 10 times
and the points shows mean squared errors on the evaluation set for all repetitions and
all number of nodes. The minimum value obtain was in this case 7.71, obtained with 40
hidden nodes. Note that for 10 hidden nodes, one run gave an error of 48.7, but the y-axis
is here truncated in order to visualize the rest of the points better.
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(e) Why do we get different results when repeating the fit with the same number of
hidden nodes?

(f) Based on the plot above, how many number of nodes would you choose in your
network?
If you need to report the accuracy on your final prediction method, how would you
proceed for doing that?
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The plot below shows similar results, but now based on that each covariate xij is trans-
formed by

xij →
xij − x̄·j√

N−1
∑N

i′=1(xi′j − x̄·j)2
.

The minimum value obtained was in this case 3.37, now with 40 hidden nodes.
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(g) Based on the equations (*), argue why the model should in principle not depend on
any scaling or any linear transformations of the input variables xi.

Argue then why one do get different results when training on different (linear) trans-
formations of the input variables.

The previous plots were based on a penalty parameter λ = 0.5. The two plots below shows
similar results for λ = 0.25 (left) and λ = 0.1 (right). In both cases, the input variables
are scaled. For λ = 0.25 the minimum MSE value 3.03, obtained with 60 hidden nodes
while for λ = 0.1 the minimum MSE value 2.71, also obtained with 60 hidden nodes
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The table below gives the standard deviations (over the 10 repetitions) of MSE for the
different values of λ and number of hidden nodes.

8



Number of hidden nodes
10 20 30 40 50 60

λ = 0.5 0.402 0.234 0.107 0.097 0.065 0.079
λ = 0.25 0.794 0.413 0.299 0.218 0.151 0.172
λ = 0.1 0.636 0.705 0.276 0.284 0.673 0.210

(h) Do you find the table of the standard errors to be reasonable?

Based on these results, but also on how the penalty term enters the loss function,
discuss the role of the decay parameter here.

Problem 5
Consider a general situation where you for i = 1, ..., N have observed inputs xi ∈ Rp and
outputs yi where yi is either numerical or categorical. You want to use the data to fit a
model that predicts future Y ’s.

(a) It is common to divide a dataset into a training set and a test set and sometimes
also a validation set. Discuss the role of these sets and the advantages/disadvantages
in doing such a split of the dataset.

(b) Explain what we mean about cross-validation. Discuss its use and how this method
relates to the training/validation/test sets.

Problem 6
Assume Y = f(x) + ε where f(x) is a piecewise quadratic polynomial:

f(x) =

{
β0,1 + β1,1x+ β2,1x

2 for x < c;

β0,2 + β1,2x+ β2,2x
2 for x ≥ c.

(a) Assume we want to put constraint on f(x) by assuming the function both is contin-
uous and have continuous first derivatives. What kind of constraints do this put on
the βj,m’s?

How many effective (or free) number of parameters do you then end up with?

(b) Now define

g(x) = θ0 + θ1x+ θ2x
2 + θ3(x− c)2+

where (x− c)2+ = (x− c)2 if x > c and 0 otherwise.

Show that g(x) is continuous, have continuous first derivatives and is quadratic within
each of the intervals (−∞, c) and [c,∞).

(c) Show that we can obtain f(x) = g(x) for a suitable choice of θj, j = 0, ...,M + 1.
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Assume now Y = f(x) + ε where f(x) is a piecewise quadratic polynomial within a set of
intervals:

f(x) = β0,m + β1,mx+ β2,mx
2 for cm−1 ≤ x < cm

for m = 1, ...,M , c0 = −∞ < c1 < · · · < cM−1 < cM =∞

(d) Assume again we want to build in constraints on f(x) in that the function is both
continuous and have continuous first derivatives. What constraints do this put on
the βj,m’s?

How many effective (or free) parameters do you end up with in this case?

(e) How can estimation of the parameters be performed?

You do not need to do the actual calculations, only describe which method that can
be applied

Problem 7
We will in this exercise consider a dataset which are results of a spinal operation "laminec-
tomy" on children, to correct for a condition called "kyphosis". The dataset consists of 81
observations on the following 4 variables.

Kyphosis a response factor with levels absent (0) and present (1) (denoted by y).

Age of child in months, a numeric vector (denoted by x1).

Number of vertebra involved in the operation,a numeric vector (denoted by x2).

Start level of the operation, a numeric vector (denoted by x3).

Among the 81 observations 64 have absent, 17 have present as response. The plots below
shows boxplots for Age (left), Number (middle), Start (right) divided into the two classes.

10



absent present

0
50

10
0

15
0

20
0

Kyphosis

A
ge

absent present

2
4

6
8

10

Kyphosis

N
um

be
r

absent present

5
10

15

Kyphosis

S
ta

rt

Consider first a logistic regression model explanatory variables
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3, x

3
3).

(a) Write down the actual logistic model for this specific case.

The table below shows the results by fitting such a model to the data:
Estimate Std. Error z value Pr(> |z|)

(Intercept) -9.25 7.02 -1.32 0.19
Age 0.06 0.08 0.73 0.46

I(Age^2) -0.00 0.00 -0.06 0.95
I(Age^3) -0.00 0.00 -0.32 0.75
Number 2.06 3.81 0.54 0.59

I(Number^2) -0.21 0.71 -0.29 0.77
I(Number^3) 0.01 0.04 0.13 0.90

Start 0.40 0.96 0.41 0.68
I(Start^2) -0.03 0.14 -0.19 0.85
I(Start^3) -0.00 0.01 -0.16 0.87

Discuss possible weaknesses with this fit.

(b) The results below shows the fit obtained after model selection using a stepwise AIC
procedure.

Explain what such a stepwise AIC procedure actually do. Also comment on the
differences between this model and the one obtained in (a).
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Estimate Std. Error z value Pr(> |z|)
(Intercept) -5.26 2.09 -2.52 0.01

Age 0.05 0.02 2.38 0.02
I(Age^3) -0.00 0.00 -1.88 0.06
Number 0.32 0.24 1.34 0.18

Start 0.48 0.33 1.48 0.14
I(Start^2) -0.04 0.02 -2.06 0.04

(c) An alternative to the AIC criterion is the BIC criterion. A stepwise procedure using
BIC resulted in the following model and table:

Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.84 1.09 -1.69 0.09

Age 0.05 0.02 2.40 0.02
I(Age^3) -0.00 0.00 -1.88 0.06

I(Start^2) -0.02 0.00 -3.58 0.00

Explain the differences between AIC and BIC. Why do we obtain a smaller model in
this case?

(d) An alternative to polynomial regression is GAM. The plots below shows the estimated
nonlinear functions for Age (top left), Number (top right) and Start (bottom left).
Based on the results obtained earlier with polynomial regression, do you find these
results reasonable?
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(e) Yet another fit is based on trees. The plot below shows a fitted tree based on first
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building a large tree and then pruning.

|Start < 12.5

Age < 34.5

Number < 4.5
Start < 8.5

Start < 14.5

absent
absent

present absent

absent absent

Discuss whether this tree is reasonable, both based on the boxplots shown earlier and
the fits obtained for the other methods.

Assume you have an individual of Age 18 with Number=5 and Start=2, what will
be the prediction in this case?

(f) The table below shows the log-likelihood values for the different methods discussed.

Method Log-likelihood
Logistic (a) -23.83
Logistic select AIC (b) -24.77
Logistic select BIC (c) -27.44
GAM (d) -29.26
Tree (e) -23.94

Based on this table, which model would you prefer? Specify which criteria you are
using for this choice.

Problem 8
Consider a somewhat more general K-means algorithm described below:

1. Choose K and initial arbitrary centroids m1, ...,mk

2. Cycle for r = 1, 2, ...

a. for i = 1, ..., n, assign xi to group k so that d(xi,mk) is the minimum
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b. for k = 1, ..., K, let mk be the vector which minimizes
∑

ci==k d(xi,mk) where
ci is the group which was assigned in the previous step

(a) Show that if d(xi,mk) = ||xi−mk||2, that is standard Euclidian distance, we obtain
the ordinary K-means algorithm.

(b) An alternative would be to choose d(xi,mk) = (xi −mk)TΣ−1(xi −mk) for some
appropriate chosen matrix Σ.

Based on the similarities between ordinary K-means clustering and model based
clustering, what kind of model for x given class membership would this correspond
to?

Discuss possible advantages in this more general procedure.

(c) An even more general procedure would be to use d(xi,mk) = (xi−mk)Σ−1
k (xi−mk),

that is group-specific matrices Σk. Discuss possible advantages in this procedure.

Also try to suggest some ways of specifying the Σk’s within the algorithm.

(d) The four plots below shows clustering using K = 2, K = 3, K = 4 and K = 5, respec-
tively on n = 3000 simulated data in 3 dimensions. Each subplot show cross-plot of
corresponding variables and colours correspond to different groups the observations
are allocated to in the final run.

Based on these plots, explain why it was reasonable to use a group dependent Σk in
this case.

14



K=2 K=3
−5 0 5

−
4

−
2

0
2

4

−
5

0
5

−4 −2 0 2 4 −5 0 5

−
5

0
5

−5 0 5

−
4

−
2

0
2

4

−
5

0
5

−4 −2 0 2 4 −5 0 5

−
5

0
5

K=4 K=5
−5 0 5

−
4

−
2

0
2

4

−
5

0
5

−4 −2 0 2 4 −5 0 5

−
5

0
5

−5 0 5

−
4

−
2

0
2

4

−
5

0
5

−4 −2 0 2 4 −5 0 5

−
5

0
5

(e) The plots above were actually obtained using model based clustering with an as-
sumption of Gaussian distributions within each group. The log-likelihood values was
then -16752.96 for K = 2, 762.39 for K = 3, 766.40 for K = 4 and 775.22 for K = 5.
Based on these values, which number of clusters would you prefer?

Problem 9
We will in this exercise look at a dataset on air quality. The dataset is from May to
September 1973 and measures ozon level (the scale is ppb=parts per billion) in New York
together with several other (explanatory) variables. We will in the start concentrate on
temperature (in Fahrenheit). The figure below shows a plot of ozon against temperature.
We will assume the model

Y = f(x) + ε

where x is temperature and Y is ozon level.
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Consider first local regression in one dimension. Let K(xi, x0) be the weight function
which specifies how much weight we put on observation i when we want to predict x0.
Mathematically the method can be described through minimization of

n∑
i=1

K(xi, x0)(yi − β0(x0)−
d∑

j=1

βj(x0)x
j
i )

2

with respect to β0(x0), ..., βd(x0). We obtain a prediction in point x0 given by

f̂(x0) = β̂0(x0) +
d∑

j=1

β̂j(x0)x
j
i

(a) For d = 1, derive the optimal estimates for β0(x0), β1(x0) (it is enough to write down
an equation system that the estimates needs to satisify).

Will f̂(x0) be an unbiased estimate for f(x0)? Include an argument for your answer.

Show that ŷi = f̂(xi) =
∑n

j=1 Sijyj for all i.

Argue why this also is true for d = 2.

(b) Below is a plot of estimated relationship between temperature and ozon based on
local regression with d = 1 (left) and d = 2 (right).

For these two regressions, the corresponding kernel functions K(xi, x0) are chosen
such that

∑n
i=1 Sii are about similar for d = 1 og d = 2. Why is this a reasonable

choise?

The estmated mean square error (based on a separate test set) was 688.96 for d = 1
and 698.71 for d = 2. Based on the plot below, argue why this is reasonable in this
case.
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(c) An alternative to local regression is splines. Below is an estimate of f based on
smoothing splines. Also here ŷi = f̂(xi) =

∑n
j=1 Sijyj (this you do not need to show)

and
∑n

i=1 Sii is approximately equal to what was used for local regression.

The estimated function seems to be more smooth in this case compared to what we
obtain for local regression. Argue why this is reasonable.

The estimated mean square error in this case was 694.66. Based on these results,
which method would you prefer?
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(d) We will now extend the model to also include wind. We will assume a model of the
form

Y = f1(x1) + f2(x2) + ε

where x1 corresponds to temperature and x2 to wind. f1(·) are f2(·) are smooth
functions.

Which class of methods to this model belong to?
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Below are fits of f2(x2) with f1(x1) = 0 (left) and f1(x1) fitted simultaneously (right)
shown. Discuss similarities/differences between the two estimates of f2(x2).
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(e) Assume you have a good method for fitting a model Y = f(x) + ε where f(·) is
a smooth function. Explain how you can use this method to fit a model with two
smooth functions (as in point (d)).

Problem 10 (This exercise is somewhat more difficult mathematically)
Assume a linear regression model

Yi = β0 +

p∑
j=1

βjxij + εi, εi
iid∼ N(0, σ2)

We can write this model in vector/matrix form:

Y = Xβ + ε, ε ∼ N(0, σ2I)

Let β̂ be the least squares estimates for β. We will in this exercise look at the quantity
RSS =

∑n
i=1(Yi − Ŷi)2 where Ŷi = xT

i β̂.

(a) Show that

E = Y − Ŷ = [In −X(XTX)−1XT ]ε

where In is a diagonal matrix of size n× n.
What is the expectation vector and covariance matrix for E?

(b) Show that RSS = (Y − Ŷ )T (Y − Ŷ ) and

E[RSS] = σ2(n− p− 1)

Hint: Show that RSS = trace(EET ) where the trace of a matrix is the sum of the
diagonal elements. You can further use that trace(AB) = trace(BA) for A and B
matrices with matching sizes.
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(c) Show that Cov(ŷi, Ej) = 0 for all i, j. Discuss this result.

Hint: It can be easier to work directly with the vectors ŷ andE. The cross-covariance
matrix between two stochastic vectors U and V can be written as Cov(U ,V ) and
we have the general result Cov(AU ,BV ) = ACov(U ,V )BT .

Problem 11
We will here look at a regression setting where we have some explanatory variables x and
assume

Y = f(x) + ε

We wish to predict Y where we use as evaluation criterion E[(Y − Ŷ )2]. As usual, we have
data {(yi,xi), i = 1, ..., n}.

(a) Assume that Ŷ (x0) = f̂(x0) for a new point x0. Show that expected loss can be
written as

E[(Y − Ŷ (x0))
2|x0] = (f(x0)−E[f̂(x0)])

2+E[(f̂(x0)−E[f̂(x0)|x0])
2|x0]+Var(ε)

Give an interpretation of the different terms on the left hand side.

(b) Now let f̂1(x) be a predictor based on a very restrictive method/model while f̂2(x) is
based on a more flexible approach. Discuss the different terms in the equation above
in this setting.

(c) Discuss different methods for estimation of E[(Y − Ŷ )2]. In particular discuss advan-
tages and disadvantages with the different methods.

Problem 12 (Note: This problem is somewhat more difficult mathematically)
Spam filters are often based on statistical classification methods in order to distinguish
between real and spam mails. Such methods can rely on frequencies of different words in
the mail. If we let W be a word which we believe occur more often in a spam than in a
real email, a possible procedure is based on

Pr(V |S) = q > p = Pr(V |R)

where V is the event that W is a word in the mail, S is the event that the mail is a spam
and R is the event that the mail is real.

Assume further that r is the fraction of mails that are real.

(a) Derive a classification rule where you classify to spam if the probability for a spam-
mail is larger than 0.5.

(An expression which is a function of q, p, r. You will need to consider both the event
V and the complementary V c)
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(b) Assume that we consider classification of real mails to spam as a more serious error
than classification of spam mail as real mail. Explain how this can be formulated
mathematically and derive the optimal classification rule in this case.

Assume now that you have a set of words W1, ...,WM which frequently occur. Let Vm be
the event that the word Wm occur in a mail. V = (V1, ..., VM) will then be a vector of
binary variables (where 1 corresponds to that the word occur in the mail). Let further
Pr(Vm|S) = qm and Pr(Vm|R) = pm.

(c) Assume now that Pr(V |S) =
∏M

m=1 q
Vm
m (1− qm)1−Vm and Pr(V |R) =

∏M
m=1 p

Vm
m (1−

pm)1−Vm . What kind of assumptions do these statements rely on?

Derive the classification rule also in this case. (You will get a rather complicated
formulae in this case.)

(d) Often, one not only look at single words but also pair of words. Let Vm,m′ denote the
event that both words Wm and Wm′ occur.

Discuss advantages and disadvantages with such an approach.
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