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Problem 1
(a) It is difficult to evaluate whether the fit is good based on the log-likelihood due to

that there is no fixed scale on that. Further, the confusion matrix is evaluated on the
same data as the fitting and might be too optimistic.
However, the regression table gives the impression that there are too many variables
included indicating that some kind of variable selection should be performed.

(b) The maximum likelihood value will always be larger for a model with more variables
included due to that we maximise over a larger space.
We can use the AIC kriterion to compare the models. This gives

AIC1 =− 2 ∗ (−97.83) + 2 ∗ (10) = 215.66

AIC2 =− 2 ∗ (−98.71) + 2 ∗ (6) = 209.42

The second model has almost as good likelihood value with less parameters, which
results in that the AIC value for the new model is lower and the one to prefer.
If we look at the confusion matrix for the new model, it has one more error, but given
that this is on the training data this can be due to overfitting on the first (larger)
model.

(c) The P-values are values used for testing the corresponding hypothesis H0j : βj = 0.
We see that while the first model has many large P-values and thereby do not give
significant reasons for rejecting H0j for many j’s, the second model has all small
P-values indicating that all variables now are important.
A possible reason for the P-values to change in the second model is that the corre-
sponding covariates are correlated with some of the variables that have been removed.

(d) We have that each Yi is binomial distributed with one trial. The probability for the
response to be equal to one vary from one observation to the next. This is then marked
by an index i on pi. By in addition assume independence between the responses, we
obtain products of the form pyii (1− pi)1−yi .
Since we for classification trees assume that the probabilities are equal within each
region, we obtain that pi = cm for xi ∈ Rm.
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(e) We have 5 leaves which give 5 cm parameters. In addition we have 4 splits. Each split
has two parameters, one specifying which variable that the split depend on, the other
which value the split is made on. In total we then get 5 + 2 ∗ 4 = 13 parameters.

This gives an AIC value

AIC = −2 ∗ (−90.21) + 2 ∗ 13 = 206.43

that is a bit better than what we obtained earlier.

Note that for classification trees, sometimes the complexity is rather measures by the
number of leaves, calculating

AIC = −2 ∗ (−90.21) + 2 ∗ 5 = 190.43

which gives an even better measure of the model.

(f) In leave-one-out cross-validation, one observation, i say, is taken out and the rest is
used for training the model. Let f̂−i(xi) be the prediction based on the model and
xi. This is then compared with yi. This is then performed for all observations.

We now see that the error rates are larger than previously. This is due to that we
did not take into account overfitting earlier.

Now see that logistic regression is doing better than classification tree with respect
to error rate. We therefore will prefer logistic regression in this case.

Problem 2
(a) This is called Ridge regression. The main difference is that we introduce a penalty

on the β-coefficients, in particular shrinking them to zero. This reduces the variance,
at a potential loss in increased bias.

(b) For simplicity, assume
∑n

i=1 xij = 0. Defining Lλ(β), we have

∂

∂β0
Lλ(β) =− 2

N∑
i=1

(yi − β0 −
p∑
j=1

βjxij)

=− 2
N∑
i=1

yi + 2
N∑
i=1

β0 + 2
N∑
i=1

p∑
j=1

βjxij

=− 2
N∑
i=1

yi + 2
N∑
i=1

β0
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and putting this to zero gives β̂0 = ȳ. Further, for k = 1, 2, .., p,

∂

∂βk
Lλ(β) =− 2

N∑
i=1

(yi − ȳ −
p∑
j=1

βjxij)xik + 2λβk

=− 2
N∑
i=1

yixik + 2
N∑
i=1

ȳxik + 2
N∑
i=1

p∑
j=1

βjxijxik + 2λβk

=− 2
N∑
i=1

yixik + 2
N∑
i=1

p∑
j=1

βjxijxik + 2λβk

which, when put to zero, gives the equation system

p∑
j=1

βj

N∑
i=1

xijxik + λβk =
N∑
i=1

yixik, k = 1, ..., p

or in vector/matrix form (with now X not including a first column with 1’s)

[XTX + λI]β = XTY

and thereby β̂ = [XTX + λI]−1XTY .

Alternatively, one could directly write (after inserting β̂0 = ȳ)

Lλ(β) =(Y − ȳ1−Xβ)T (Y − ȳ1−Xβ) + λβTβ

=(Y − ȳ1)T (Y − ȳ1)− 2((Y − ȳ1)TXβ + βTXTXβ + λβTβ

and take the derivative of β directly,

∂

∂β
Lλ(β) =− 2(Y − ȳ1)TX + 2βTXTX + 2λβT

=− 2Y TX + 2βTXTX + 2λβT

since 1TX = 0.

(c) This is the Lasso method. Although also in this case the βj’s are shink to zero,
the form of panlization in this case results in that some parameter estimates can
be exactly zero. Due to this we have that the left hand plot correspond to Lasso.
Further, the least squares estimates are obtained by looking at the rightmost values.

(d) The λ value should be based on some evaluation set, most efficiently performed by
cross-validation.

3



Problem 3
(a) The increase in number of light vehicles results in an increase in the response as well

which is reasonable. The same is true for heavy vehicles.

For average velocity, we see that the influence from this variable only appears when
the speed is above 40, again quite reasonable.

For temperature we see that when the temperature is below 0, it does not really
matter how low it is, between 0 and 15 there is a high influence on temperature while
it is smaller for temperatures above 15.

For rainfall last four hours, there is a negative influence up to a certain amount of
rain, then it flattens out.

The rainfall last week seems to be less important, but with a somewhat similar
structure as for the last four hours.

(b) We see that the speed gives an increase of about 0.3 per 10 kilometer, indicating that
we get a reduction of approximately 0.6. Note however that we then are extrapolating
outside the region of fitted curves which might be somewhat dangerous.

Problem 4
(a) We have

ηi =γ0 + γ ∗ (α01 +αT1 xi)

=γ0 + γ ∗ α01 + γ ∗αTxi

By defining β0 = γ0 + γ ∗ α01 and β = γ ∗α, we obtain

yi = β0 + βTx

Due to that we can multiply γ by a factor and divide α01 by the same factor without
changing ηi, there is an identifiability problem. Similar problems for γ and α. Also a
problem with γ0.

(b) Principal component analysis is essentially the same model, but how parameters
are specified is different. In principal components, the α0m and αm parameters are
estimated through the xi’s only, while for neural networks based on the least squares
criterion, all parameters are based on how will η fit to the data y.

(c) We have now

ηi = γ0 +
M∑
m=1

γm
exp(α0m +αTmxi)

1 + exp(α0m +αTmxi)

Since this is a smooth function of the parameters involved and also the least squares
measure is a smoot function, an optimal value of the least squares measure will have
a gradient equal to zero which motivates gradient based methods.
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Even though the nonlinear f0 will remove some of the identifiability problems, there
will still be some (for instance by switching parameters corresponding to m and m′).
Further, there will be many local optima.

(d) Due to the flexibility in neural networks, it is very easy to overfit to the training
data. The penalty term tries to avoid this problem.

(e) Procedures for fitting neural networks usually have random initialization values for
the optimization routine. Due to the problem with multiple local optima, we can end
up with different results when repeating the procedure.

(f) It is reasonable to choose the model that performs best on the evaluation set. Howe-
ver, due to that the evaluation set then is used as part of the inference (the selection
of model), this error measure will be too optimistic. We should therefore test the
final model on a separate test set.

(g) The model (∗) is in principle scale invariant (if we scale xij, we can scale αmj corre-
spondingly). However, the penalty term is scale depending, resulting in the difference
in results.

(h) It is reasonable that the variability increases with decreasing λ since we then are
regularizing less.

It is somewhat difficult to summarize these results since it seems like one can obtain
better results with a larger numb er of hidden nodes, but at the same time the
variability is increasing. This is the classical bias-variance trade off. It do show that
the decay parameter is important though.

Problem 5
(a) When training/learning a model (estimating parameters) we do so by making it fit

as good as possible to the given dataset. If we use the same data for both training
and evaluation, we will get a too optimistic measure on how well the model is doing
on predicting new data. We therefore need a separate evaluation set to measure the
real performance.

In many cases we compare many different models/methods and select the one that
performs the best on the evaluation set. This is a reasonable approach for choice of
model, but by choosing the mininum of a set of random variables (here the perfor-
mance measure) we end again up with a measure that is too optimistic (too low). In
order to take the model choise into account we therefor also need a separate test set
for the final evaluation.

(b) A weakness when dividing data into training/validation is that we reduce the amount
of data that we can use for training.

Cross-validation is a smart way of utilizing the given data efficiently. The procedure
is to divide the data into K groups, train on K − 1 groups and evaluate on the last
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one. This can be circulated, in which case we always train on a fraction (K − 1)/K
of the data while evaluation actually is performed on all the data.

If we consider several models, cross-validation can be used for choosing a model. In
that case we again need a separate test set for evaluating the final model.

If we only have one model to consider, cross-validation will give an (almost) unbiased
estimate of the prediction error.

Problem 6
(a) We have a potential discontinuity in the point x = c. Enforcing continuity imply that

β0,1 + β1,1c+ β2,1c
2 = β0,2 + β1,2c+ β2,2c

2

while continuous derivatives imply

β1,1 + 2β2,1c = β1,2 + 2β2,2c.

We started with 6 parameters, but with 2 constraints, we end up with 4 free para-
meters.

(b) Within the interval (−∞, c) we have

g(x) = θ0 + θ1x+ θ2x
2

while within the interval (c,∞) we have

g(x) = θ0 + θ1x+ θ2x
2 + θ3(x− c)2

which both are quadratic functions.

Further we have that g(c) = θ0+θ1x+θ2c
2 in both cases showing that g is continuous.

Within the interval (−∞, c) we have

g′(x) = θ1 + 2θ2x

while within the interval (c,∞)

g′(x) = θ1 + 2θ2x+ 2θ3(x− c)

showing that g′(c) = θ1 + 2θ2c in both cases and thereby also has continuous deriva-
tives.

(c) In the interval (−∞, c) we must have

β0,1 + β1,1x+ β2,1x
2 = θ0 + θ1x+ θ2x

2

which imples that θ0 = β0,1, θ1 = β1,1, θ2 = β2,1.
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In the intervall [c,∞) we must have

β0,2 + β1,2x+ β2,2x
2 =θ0 + θ1x+ θ2x

2 + θ3(x− c)2

=β0,1 + c2θ3 + (β1,1 − 2cθ3)x+ (β2,1 + θ3)x
2

which imply 3 requirements on θ3:

θ3 =c−2(β0,2 − β0,1)
θ3 = 1

2c
(β1,1 − β1,2)

θ3 =β2,2 − β2,1

However, if we use the constraints from (a) we have that

1
2c

(β1,1 − β1,2) = 1
2c

(2β2,2c− 2β2,1c) = β2,2 − β2,1
c−2(β0,2 − β0,1) =c−2[β1,1c+ β2,1c

2 − (β1,2c+ β2,2c
2)]

=β2,1 − β2,2 + c−1(β1,1 − β1,2)
=β2,1 − β2,2 + 2(β2,2 − β2,1) = β2,2 − β2,1

which shows that we actually only have one requirement.

(d) We have potential non-continuities in the points c1, ..., cM−1. Continuity implies

β0,m + β1,mcm + β2,mc
2
m = β0,m+1 + β1,m+1cm + β2,m+1c

2
m

while continuous derivatives imply

β1,m + 2β2,mcm = β1,m+1 + 2β2,m+1cm.

We start with 3M parameters, but with 2(M − 1) constraints, we end up with 3M −
2(M − 1) = M + 2 free parameters.

(e) Since we can write the model as a linear combination of basis functions, the free
parameters can be estimated be ordinary least squares.

Problem 7
(a) We have that

Pr(Y = 1|x) =
exp(η(x))

1 + exp(η(x))

η(x) =β0 + β1x1 + β2x
2
1 + β3x

3
1 + β4x2 + β5x

2
2 + β6x

3
2 + β7x3 + β8x

2
3 + β9x

3
3

Many of the P-values are very large, indicating that we should do some kind of model
selection.
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(b) AIC is defined by

AIC = −2 logL(θ̂) + 2p

where p is the number of parameters. In the stepwise AIC procedure one start with
the full model and then remove the one variable that makes the most improvement
on the AIC value. It stops when no improvements can be made. Alternatively one
can go the opposite way.

In this case several of the components are removed and for the remaining components
the P-values are much smaller. The latter is probably due to correlations between
the covariates in the full model. For Number, only a linear term remains.

(c) For the BIC criterion we are instead using

BIC = −2 logL(θ̂) + log(n)p

In this case log(n) = log(81) = 4.39 so that we have a higher penalty on complex
models. This results in that BIC will favour more simple models compared to AIC,
which we also see here.

(d) We saw that after model selection, Number was only included as a linear effect (or not
iuncluded at all). From the second plot we see that we can fit a linear function within
the confidence band, indicating that there is no significant non-linear structure of
Number in this case. This linear function can actually be quite close to the zero-line,
indicating that Number is not that important.

For the two other variables, the non-linear structure is more clear, corresponding to
that we have higher order polynomials included in the models previously considered.

(e) We see that the first splits are based on Start and Age, indicating that these are
the most important covariates, similar to what we saw when doing model selection.
Looking at the boxplots, splitting by Start at the first split seems very reasonable.
For the next splits it is more difficult to see due to that it then depends on what we
have done in the first split, but the split by age also seems reasonable.

(f) Assume we are using AIC/BIC, we first need to derive the number of parameters.

For logistic we have 10 parameters.

For logistic selected with AIC we reduced it to 6 parameters and down to 4 based on
BIC.

For GAM it is not quite clear how many parameters we have, but it should be at
least as many as models consider in (b) and (c). Since we got worse log-likelihood
value here, we would not prefer this model.

For the tree-based model, we have 6 leaves giving 6 parameters, 5 splits giving 10 pa-
rameters, in total 16 parameters. However, another (more common?) way to measure
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complexity of trees is to only consider the number of leaves, that is using p = 6 in
this case. We include this as an alternative

We then get
Method Log-likelihood AIC BIC

Logistic (a) -23.83 67.66 91.60
Logistic select AIC (b) -24.77 61.54 75.91
Logistic select BIC (c) -27.44 62.88 72.46

GAM (d) -29.26 ? ?
Tree (e) -23.94 79.88 118.19

Tree (e), number of leaves -23.94 59.88 74.25
We see that logistic select seems to be the best, but the Tree might also be good
depending on how we measure complexity.

Problem 8
(a) For d(xi,mk) = ||xi −mk||2, we see directly that step 1 correspond to the ordinary

K-means. For step 2, minimizing∑
ci=k

d(xi,mk) =
∑
ci=k

||xi −mk||2

we obtainmk = 1
nk

∑
ci=k

xi which is exactly what we use in the K-means algorithm

(b) This corresponds to that x|k ∼ N(µk,Σ).

If variables are on different scales, we can use a diagonal matrix taking this into
account. We can also in this way take into account correlations between variables.

(c) We then assume x|Ci = k ∼ N(µk,Σk) If the variance/correlation structures are
very different between the groups, this can be an advantage.

For a given set of ci’s, we can estimate Σk by the ordinary empirical covariance matrix

Σ̂k =
1

nk − p
∑
i;ci=j

(xi −mk)(xi −mk)
T

(d) We see that within each group we have very different structures of the ellipses de-
scribing the variability indicating that group-spesific Σk’s are reasonable.

(e) We have that the number of parameters are K − 1 + K(p + p(p + 1)/2) = K − 1 +
K(3 + 3 ∗ 4/2) = 10K − 1. Using the AIC/BIC criteria, we obtain

K l AIC BIC
2 -16752.96 33543.92 33658.04
3 762.39 -1466.78 -1292.60
4 766.40 -1454.80 -1220.55
5 775.22 -1452.44 -1158.13
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Both the AIC and the BIC criterion seems to prefer K = 3 in this case which seems
reasonable given the structures in the plots.

Problem 9
(a) We then have to minimize (dropping for simplicity the dependence on x0)

g(β0, β1) =
n∑
i=1

K(xi, x0)(yi − β0 − β1xi)2

with respect to β0(x0), β1(x0). This is a smooth function in the two parameters and
we have

∂

∂β0
g(β0, β1) =− 2

n∑
i=1

K(xi, x0)(yi − β0 − β1xi)

=− 2
n∑
i=1

K(xi, x0)yi + 2β0

n∑
i=1

K(xi, x0) + 2β1

n∑
i=1

K(xi, x0)xi

∂

∂β1
g(β0, β1) =− 2

n∑
i=1

K(xi, x0)(yi − β0 − β1xi)xi

=− 2
n∑
i=1

K(xi, x0)yixi + 2β0

n∑
i=1

K(xi, x0)xi + 2β1

n∑
i=1

K(xi, x0)x
2
i

and putting these equations to zero we obtain

β0

n∑
i=1

K(xi, x0) + β1

n∑
i=1

K(xi, x0)xi =
n∑
i=1

K(xi, x0)yi

β0

n∑
i=1

K(xi, x0)xi + β1

n∑
i=1

K(xi, x0)x
2
i =

n∑
i=1

K(xi, x0)yixi

or ( ∑n
i=1K(xi, x0)

∑n
i=1K(xi, x0)xi∑n

i=1K(xi, x0)xi
∑n

i=1K(xi, x0)x
2
i

)(
β0
β1

)
=

( ∑n
i=1K(xi, x0)yi∑n
i=1K(xi, x0)yixi

)
which can be easily solved.
By using this method, we assume that (locally) f(x) is linear. When this is not the
case, we will obtain a bias.
When we predict yi, we use f(xi). We have that

f(xi) = β̂0(xi) + β̂1(xi)xi

Now we see from the equation system above that the left hand side do not depend
on the y’s while the right hand side are linear functions of the y’s. We then do get
that also f(xi) becomes a linear function of the y’s.
For d = 2 we will obtain a similar equation system and the argument will then also
be similar.
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(b) When we have the structure ŷ = Sy, a way of measuring complexity (degrees of
freedom) is to use Trace(S). By choosing these to be similar, we obtain approximately
the same complexity.
From the plot it seems quite reasonable to assume a local linear structure for most
of the x points. It is therefore also reasonable that a measure that gives the average
(or sum) performance becomes best for d = 1. If one however was very interested in
the point where the slope change, it might be that d = 2 would be better there!

(c) For the smoothing spline method, the penalization term is directly related to smooth-
ness (or curvature) of the function so we enforce smoothness.
Given that we have chosen the complexities to be approximately similar, we should
choose the one with best prediction performance which then is local regression with
d = 1.

(d) This belongs to the class of additive models
The structure of the two plots are very similar, but the scales are quite different,
indicating that when temperature is left out, the model tries to compensate for this
by scaling up the wind part.
In both cases it is clear that increasing wind has a positive effect on the ozon level
which is reasonable.

(e) One could start with putting f 0
2 (x2) = 0 and then estimate f 1

1 (x1). Then one can
define the residuals

ri = yi − f 1
1 (x1)

and use these residuals as response when estimating f 2
2 (x2). We can then construct

new residuals

ri = yi − f 2
2 (x1)

and estimate f 3
1 (x1) by using these new residuals as responses, and so on.

This is called backfitting.

Problem 10
(a) We have that

E = Y − Ŷ =Xβ + ε−X(XTX)−1XT (Xβ + ε)

=[I −X(XTX)−1XT ]ε

This directly gives E[E] = 0.
We obtain the covariance matrix for E by

Var(E) =[I −X(XTX)−1XT ]σ2I[I −X(XTX)−1XT ]T

=[I − 2X(XTX)−1XT +X(XTX)−1XTX(XTX)−1XT ]σ2

=[I −X(XTX)−1XT ]σ2
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(b) We have

E[RSS] =E[ETE]

=E[trase(EET )]

=trase(E[EET ])

=trase(Var(E))

=trase([I −X(XTX)−1XT ]σ2)

=σ2trase(I −X(XTX)−1XT )

=σ2(trase(I)− trase(X(XTX)−1XT )

=σ2(n− trase(Ip)) = σ2(n− p)

(c) We have

Cov(ŷ,E) =Cov(X(XTX)−1XT (Xβ + ε, [I −X(XTX)−1XT ]ε)

=Cov(X(XTX)−1XTε, [I −X(XTX)−1XT ]ε)

=X(XTX)−1XTCov(ε, ε)[I −X(XTX)−1XT ]

=X(XTX)−1XTσ2I[I −X(XTX)−1XT ]

=σ2[X(XTX)−1XT −X(XTX)−1XTX(XTX)−1XT ]

=σ2[X(XTX)−1XT −X(XTX)−1XT ] = 0

This means that the error we make is independent of the actual size of the prediction.
Geometrically this means that ŷ is orthogonal to E.

Problem 11
(a) We assume ε has expectation 0. We further assume Y is a new observation that has

not been used for construction of Ŷ . We first have that

E[(Y − Ŷ )2] =E[E[(Y − Ŷ )2|x]]

and it is enough to consider E[(Y − Ŷ )2]x] for each x separately.

Further,

E[(Y − Ŷ )2|x]

=E[(Y − E[Y |x] + E[Y |x]− Ŷ )2|x]

=E[(Y − E[Y |x])2|x] + E[(E[Y |x]− Ŷ )2|x] + 2E[(Y − E[Y |x])(E[Y |x]− Ŷ )|x]

=Var(Y |x) + E[E[Y |x]− Ŷ (x))2|x]

=Var(ε) + E[f(x)− Ŷ (x))2|x]
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since E[Y |x] and Ŷ are constant given x. We further have

E[f(x)− Ŷ (x))2|x] =E(f(x)− E[Ŷ (x)] + E[Ŷ (x)]− Ŷ (x))2|x]

=E(f(x)− E[Ŷ (x)])2|x] + E[(E[Ŷ (x)]− Ŷ (x))2|x]+

2E[(f(x)− E[Ŷ (x)])(E[Ŷ (x)]− Ŷ (x))|x]

=(f(x)− E[f̂(x)|x])2 + Var[f̂(x)|x]

The first term is the bias (squared) while the second term is the variance, showing
the bias-variance trade off.

(b) For a very restrictive estimator we will expect a high bias but a low variance

For a very flexible estimator we will expect a low bias but a high variance.

(c) We could use the same data to both fit and estimate the performance, but then we
would underestimate the error.

We could leave out a test set for evaluation. We would then get an unbiased estimate
of the error, but we have less data to fit.

We can do cross-validation in which case we obtain both large training sets and a
large test set. The main disadvantage here is that it can be time-consuming. However,
in many model some can utilize efficient algorithms for calculating this.

Problem 12
(a) We have

Pr(S|V ) =
Pr(S) Pr(V |S)

Pr(S) Pr(V |S) + Pr(R) Pr(V |R)
=

(1− r)q
(1− r)q + rp

,

Pr(R|V ) =1− Pr(S|V ) =
rp

(1− r)q + rp

and

Pr(S|V ) >0.5

m
Pr(S|V )

1− Pr(S|V )
> 1

m
(1− r)q
rp

>1

m
q

p
>

r

1− r
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that is if we observe V and q
p
> r

1−r we classify it as spam.
Similarly

Pr(S|V c) =
Pr(S) Pr(V c|S)

Pr(S) Pr(V c|S) + Pr(R) Pr(V c|R)
=

(1− r)(1− q)
(1− r)(1− q) + r(1− p)

Pr(R|V c) =1− Pr(S|V c) =
r(1− p)

(1− r)(1− q) + r(1− p)
and

Pr(S|V c) >0.5

m
Pr(S|V c)

Pr(R|V c)
> 1

m
(1− r)(1− q)
r(1− p)

>1

m
1− q
1− p

>
r

1− r

that is if we observe V c and 1−q
1−p >

r
1−r we classify to spam.

(b) We can introduce cR to be a measure on the loss for classifying wrongly a real mail
to spam and similarly cS a measure on the loss of classifying a spam mail to be a real
mail. Typically we will have cR > cS.
Expected loss is then

E[L] = E[E[L|x]]

where

E[L|x] =cR Pr(Y = R, Ŷ = S|x) + cS Pr(Y = S, Ŷ = R|x)

=cR[1− Pr(Y = S|x)]I(Ŷ = S) + cS1 Pr(Y = S|x)I(Ŷ = R)

This indicate that in order to miminize the loss we should put Ŷ = S if cR[1−Pr(Y =
s|x)] < cS Pr(Y = S|x) which is equivalent to Pr(Y = s|x) > cR/(cR + cS).

(c) It depends on independence of the presence of these words.

Pr(S|V ) =
Pr(S) Pr(V |S)

Pr(S) Pr(V |S) + Pr(R) Pr(V |R)

=
(1− r)

∏M
m=1 q

Vm
m (1− qm)1−Vm

(1− r)
∏M

m=1 q
Vm
m (1− qm)1−Vm + r

∏M
m=1 p

Vm
m (1− pm)1−Vm
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Pr(S|V )

Pr(R|V )
>1

m
(1− r)

∏M
m=1 q

Vm
m (1− qm)1−Vm

r
∏M

m=1 p
Vm
m (1− pm)1−Vm

>1

m∏M
m=1 q

Vm
m (1− qm)1−Vm∏M

m=1 p
Vm
m (1− pm)1−Vm

>
r

1− r

(d) The advantage of looking at pair of words is that it can be easier to obtain the
whole meaning of the mail. The disadvantage is that there will be more parameters
to estimate and that in short mails such pairs will occur very rare.
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