LIST OF FORMULAS FOR STK1100 AND STK1110

(Version of 11. November 2015)

1. Probability
Let A, B, Ay, Ao, ..., By, Bs, ... be events, that is, subsets of a sample space ().

a) Axioms:

A probability function P is a function from subsets of the sample space €2 to real
numbers, satisfying

PQ) =1
P(A)ZO
P D > °° A A NA; =0fori#j

P(AUB)=P(A)+ P(B) - P(ANDB)

f) Conditional probability:

P(AN B)

if P(B) >0

g) Total probability:

=> P(A|B)P(B;) if | JBi=Qand BiNB; = for i # j

i=1
h) Bayes’ Rule:

P(A|B,)P(B,)
PUBIA) = S "palB) P(B)

under same conditions as in g)

i) A and B are (statistically) independent events if P(AN B) = P(A)P(B)



j) Ai,..., A, are (statistically) independent events if
P(A, NN A;,) = P(A,)P(Ay) - P(A;,)
for any subset of indexes i1, 2, ...,

k) The product rule:

P(A N---NA,)
= P(A)P(As|A)P(As]A1 N Ay) -+ P(An Ay N Ay -1 Ayy)

2. Combinatorics

a) Two operations that can be done in respectively n and m different ways can be
combined in n - m ways.

b) The number of ordered subsets of r elements drawn with replacement from a set
of n elements is n”

¢) The number of ordered subsets of r elements drawn without replacement from a
set of n elements is n(n —1)---(n —r+1)

d) Number of permutations of n elements isn! =1-2-3---(n—1)-n

e) The number of unordered subsets of  elements drawn from a set of n elements

" Cﬁ n(n—1)-(n—r+1) n!

7! rl(n—r)!

r pu—
f) Number of ways a set of n elements can be divided into r subsets with n; elements

in the 7th subset is

n n!
ny ng -+ Ny ny!ns! -+ n,l



3. Probability distributions

a) For a random variable X (discrete or continuous), F(z) = P(X < z) is the
cumulative distribution function (cdf).

b) For a discrete random variable X which can take the values xy, 29, x3, . ..
we have

p(x;) is a point probability if

p(x;) >0 forallj
> pr;) =1
J
c¢) For a continuous random variable X we have
b

Pla< X <b) = / f(z)dx
F(z) = / f(u)du
fx) = F'(x)

f(x) is a probability density function if

fz) =0
/_ flz)dz =1

d) For two random variables X and Y (discrete or continuous) the
joint cumulative distribution function is F(x,y) = P(X < z,Y <y)

e) For discrete random variables X and Y which can take the values x, zs,... and
Y1, Ya, - - . Tespectively, we have

Fz,y)=>_ > plaiy;)

i<z y;<y

p(x;,y;) is a joint point probability if it fullfills the same conditions as in b)



f) For continuous random variables X and Y we have
P(X,Y)eA)= // F(u, v)dvdu
A

F(x,y):]/yf(u,v)dvdu

O*F(x,y)

flx,y) = 920y

f(z,y) is a joint probability density function if it fullfills the same conditions as
in c)

g) Marginal point probabilities:

px () = ZP(%, Y;) (for X)
py (y;) = Zp(fﬂi, yj) (for Y)

h) Marginal probability densities:

fx(z) = / F(y)dy (for X)
Frly) = / £, y)da (for Y)

i) Independence:

The random variables X and Y are independent if

p(xi,y5) = px (z:)py (y5) (discrete)
flx,y) = fx(z)fy(y) (continuous)

j) Conditional point probabilities:

p(xivyj) .
P xrily;) = for X given Y = y;
X|Y( | J) py(y]) ( J)
p(zi, y;) .
Py |x(Yj|T:) = for Y given X = x;
Y‘X( J| ) pX(xz) ( )

Assuming py (y;) > 0 and px(x;) > 0, respectively. Conditional point probabili-
ties can be treated as regular point probabilities.



k) Conditional probability densities:

o f(xay) or iven =
- f(z,y) or iven X =z

Assuming fy(y) > 0 and fx(x) > 0, respectively. Conditional probability densi-
ties can be treated as regular probability densities.

4. Expectation

a) The expected value of a random variable X is defined as

E(X) = Z z;p(x;) (discrete)
E(X) = /_OO zf(x)dx (continuous)

b) For a real function g(X) of a random variable X, the expectated value is

Elg(X)] = Z g(x;)p(;) (discrete)
E[lg(X)] = /_00 g(x)f(z)dx (continuous)

¢) E(a+bX) =a+ bE(X)

d) For a real function ¢g(X,Y") of two random variables X and Y, the expected value
is

Elg(X,Y)] = ZZQ(Ii,yj)P(xuyj) (discrete)
E[g(X,Y)} = / /g(a:,y)f(x,y)dydx (continuous)

e) If X and Y are independent E[g(X)h(Y)] = E[g(X)] - E[A(Y)]
f) If X and Y are independent E(XY) = E(X) - E(Y)

¢) E (a 4 anle) —at Zn:lbiE(X,»)

1= 1=



h) Conditional expectation:

EY|X =) = Zyjpwx(yj\ivi) (discrete)
J
EY|X =2) = /yfyx(y|x)dy (continuous)

5. Variance and standard deviation

a) The variance and standard deviation of a random variable X are defined as

2
b) V(X) = E(X?) — (E(X))

c) V(a+bX) =b*V(X)

d) If Xy,..., X, are independent we have

\% (a + Zn:bixi> = Zn: b2 V(X))

i=1

Vv (a + i bzXz) = i bi2 V(XZ) + i Z bibjCOV(XZ', Xj)
1=1 i=1

i=1 j#i

f) Chebyshev’s inequality:

Let X be a random variable with g = E(X) and ¢ = V(X).

For all t > 0 we have

0.2

P(X —pl>1t) < -

6. Covariance and correlation

a) Let X and Y be random variables with puy = E(X), 0% =

V(X), py = E(Y)

and o = V(Y). The covariance and correlation of X and Y is then defined as

Cov(X,Y) = B[(X — ux)(Y — py)]
Cov(X,Y)

0x0y

p = Corr(X,Y) =



b) Cov(X,X) = V(X)
¢) Cov(X,Y) =E(XY) — E(X)E(Y)

)
)
d) X,Y independent = Cov(X,Y) =0
e)

n m

Cov (a + i b; X;, c+ i de;) = Z Z bid;Cov(X;,Y;)
i=1 j=1

i=1 j=1

f) =1 < Corr(X,Y) <1 and Corr(X,Y) = +1 if and only if there exists two num-
bers a,b such that Y = a + bX (except, eventually, on areas of zero probability)

7. Moment generating functions

a) For a random variable X (discrete or continuous) the moment generating function
is Mx(t) = E(e™)

b) If the moment generating function M (t) exists for ¢ in an open interval contain-
ing 0, then it uniquely determines the distribution of X.

c¢) If the moment generating function Mx(t) exists for ¢ in an open interval con-
taining 0, then all moments of X exist, and we can find the rth moment by
B(X7) = M{(0)

d) Maerx(t) = €ath(bt)
e) If X and Y are independent: Mx .y (t) = Mx(t)My(t)

8. Some discrete probability distributions

a) Binomial distribution:

Point probability: P(X =k)=(})p"(Q —p)~* k=0,1,...,n

Moment generating function: Mx(t) = (1 —p+ pe")"
Expectation: E(X)=np

Variance : V(X) =np(l —p)
L X—np . : -
Approximation 1: / = ————— is approximately normally distributed
np(l —p)
when np and n(1 — p) both are sufficiently big (at least 10)

Approximation 2: X is approximately Poisson distributed with parameter A = np

when n is big and p is small



b)

Sum rule: X ~ binomial (n,p), Y ~ binomial (m,p)
and X, Y independent = X + Y ~ binomial (n + m, p)

Geometric distribution:

Point probability: P(X =k)=(1-p*1p k=1,2,...

Moment generating function: Mx(t) = e'p/[1 — (1 — p)e’]

Expectation: E(X)=1/p

Variance: ~ V(x) = (1 —p)/p?

Sum rule: If X is geometrically distributed with probability p then
X — 1 is negative binomial (1,p). Then if X and Y are

geometrically distributed with same p and independent then

X +Y — 2 is negative binomial (2, p)

Negative binomial distribution:

Point probability: P(X = k) = (k:fiil)pT(l —p)* k=0,1,2,...
Moment generating function: Mx(t) = {p/[1 — (1 — p)e']}’
Expectation: E(X)=r(1-p)/p

Variance: V(X)=r(1-p)/p?
Sum rule: X ~ negative binomial (ry, p),
Y ~ negative binomial (g, p)

and X, Y independent
= X +Y ~ negative binomial (r; + 79, p)

Hypergeometric distribution:

. M
Expectation: E(X)=n- M

. . M MyN—
Variance: V(X) = nﬁ(l — W)N_J;
. . . . . . . M
Approximation: X is approximately binomial (n, %)

when n is much smaller than NV

Poisson distribution:

Point probability: ~ P(X = k) =2e™  k=0,1,...
Moment generating function: Mx (t) = eXe'=D)

Expectation: E(X) =\



Variance: V(X)=A

Approximation: Z = ——— is approximately normally distributed

when X is sufficiently big (at least 10)

Sum rule: X ~Poisson (A1), Y ~Poisson ()
and X,Y independent = X + Y ~ Poisson (A1 + \2)

e) Multinomial distribution:

Point probability: P(Ny =ny,..., N, =n,) = m,"—'nr,p’l” R i
Here > p;=1and > n;,=n

=1 1=1
Marginal distribution: ~N; ~ binomial(n, p;)

9. Some continuous probability distributions

a) Normal distribution:

Density: f(z) = 217”76_(36_”)2/202 —00 < x <00
Moment generating function: Mx(t) = erte”’ /2

Expectation: E(X)=p
Variance: V(X)) = o2

Transformation: X ~ N(u,0%) = a+ bX ~ N(a+ bu,b*c?)
X ~ N(p,0?) = Z =22 ~ N(0,1)

Sum rule: X ~ N(ux,0%), Y ~ N(uy,o0%),
X, Y independent
= X +Y ~ N(ux + py, 0% + o)

b) Exponential distribution:

Density: f(z) = \e™* z >0

Moment generating function: Mx(t) =A/(A—=t) for t <\

Expectation: E(X) =1/A

Variance: V(X)) =1/\?

Sum rule: X ~exp(}), Y ~exp(A), X andY independent
= X +Y ~ gamma(2,1/))

¢) Gamma distribution:

Density:  f(z) = mxa_le”/ﬁ x>0



Gamma function: () = [;7u* e "du
[la+1) = ( )

['(n) = (n —1)! when n is an integer

[(1/2) = ym, I'(1)=1
Moment generating function: Mx(t) = [1/(1 — pt)]*
Expectation: E(X) = af
Variance: V(X) = af3?
Sum rule: X ~ gamma(q, 3), Y ~ gamma(d, ),

X and Y independent = X + Y ~ gamma(a + 9, )

Chi-squared distribution:
Density: f(v) = mv("m_le”’/? v>0
n degrees of freedom

Expectation: E(V)=n
Variance: V(V) =2n

Sum rule: U~ x2 ,V ~ %2 , U and V independent
SU+V~x2im

Result: Z ~ N(0,1) = Z% ~ 3
Student’s ¢-distribution:
Densitv: £) = Lt D/2 4 2= (n+1)/2 — t
ensity:  f(t) \/ﬁr(n/z)( + %) o0 <t < oo
n degrees of freedom

Expectation: E(T) =0 (n>2)
Variance: V(T') =n/(n —2) (n>3)
Result: Z ~ N(0,1), U~ x2, Z,U independent = Z/\/U/n ~t,

Binormal distribution:

Density:

f(ﬂj,y) =

1 1 [(I*MX)Q + (y—py)?

S — _ (x—px)W—py)
2rox oy \/ 1—p? eXp { 2(1-p?) rf%( U% 2p oxOoy ] }

Marginal distribution: X ~ N(ux,0%), Y ~ N(py,0%)
Correlation: Corr(X,Y) = p

Conditional distribution: Given X = z, Y is normally distributed with
expectation E(Y|X =) = uy + pZ= (2 — px)
and variance V(Y |X = z) = 03.(1 — p?)

10



10. One normally distributed sample
If X1, Xs,...,X, are independent and N (u,c?) distributed then we have that:

3

a) X =1 ;Xi and % =L > (X — X)?  are independent

=1

b) X ~ N(u,0%/n)
¢) (n—=1)8%/o* ~ X7,

Q) Sk~ b

11. Two normally distributed samples

Let X1, Xs,..., X, be independent and N(ux,o?) distributed, and Y;,Ys,...,Y,, in-
dependent and N (uy,o?) distributed. The two samples are independent of each other.

Let X, Y, S% and SZ be defined as in 10a). Then we have that:
a) S2=[(n—1)S% + (m—1)Sy]/(m+n—2) is a weighted estimator for o
b) X -Y ~ N(ux —,LLy,O'Q(% —I—#))
¢) (n+m—2)S2/0* ~ X} 0 s

XV (ux )
d) =57 ~t

n m

m-+n—2

12. Regression analysis
Assume Y; = By + fix;+¢€; 1 =1,2,...,n; where x;;-s are given numbers and ¢;-s are
independent and N (0, 0?) distributed. Then we have that:

a) The least squares estimators for 3y and f; are

b) The estimators in a) are normally distributed and unbiased, and

g

> i (7 = T)?

R 2N\ 2 R
Var(fy) = nzg’?:?(lxil—xzfﬂ and Var(fp;) =

¢) Let SSE= S.(Y;—fo— f12;)%. Then S% = SSE/(n—2) is an unbiased estimator
i=1

for 02, and (n — 2)S?/0? ~ x2_,

11



13. Multiple linear regression

Assume Y; = Bo+ iz +- -+ Brri+€5 1 = 1,2,...,n; where z;;-s are given numbers
and ¢;-s are independent and N (0, 0%) distributed. The model can be written in matrix
form as Y = X3, where Y = (Y1,...,Y,)" and B8 = (B, ..., 0" are n- and (k + 1)-
dimentional vectors, and X = {z;;} (with x;0 = 1) is a n x (k+ 1)-dimentional matrix.
Then:

1. The least squares estimator for 8 is 3 = (X'X)1X7Y.

2. Let B = (BO, . ,Bk)T. Then Bj-s are normally distributed and unbiased, and
Var(Bj) = o’cj; og Cov(Bj,Bl) = o’cj

where ¢;; is element (j,1) in the (k + 1) x (k + 1) matrix C = (XTX)~*.

n

3. Let YV; = By + Brwia + - + Bexar, og let SSE = S°(Y; — Y;)% Then 52 =
i=1
SSE/[n—(k+1)] is an unbiased estimator for 0, and [n—(k+1)]S%/0? ~ X711y

Also, S? and B are independent.

4. Let Sg_ be the variance estimator for 3; we get by replacing o with S? in the
J

formula for Var(5;) (in b). Then (5; — Bi)/ S5, ~ ta—rr1)-

12



