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Exercise 1 kNN

a The training error is always 0 because the estimate of a point is the
point itself. It is the most extreme case of overfitting: the model fits
perfectly the training data, but it is not really generalisable, as it does
not only model the structural part of the relationship between response
and covariate(s), but also the noise.

b The curse of dimensionality is the definition of that phenomenon in
which increasing the number of dimensions a method’s performance
declines substantially. It mainly affects non-parametric approaches, as
they highly rely on the empirical distribution of the data. The for-
mula, that describes the median distance between the point of interest
(here the origin) and the first training point helps to understand why
it happens: increasing the number of dimensions p on the right hand
side results in an exponential increase in the distance (the argument
p1 ´ p1{2qp1{nqq is smaller than 1, so a decrease in the exponent 1{p
increases the values). Since the estimation is based on points more
and more distant form the one of interest, the estimate declines. Note
that increasing the number of observations helps in keeping the dis-
tance small, but one needs a lot of observations to keep the distance
comparable when the number of dimensions increases.

c The 0.632 bootstrap approach is a version of bootstrap in which the
bootstrap error is mixed with the training error in order to have a
better estimate of the test error. It is known, indeed, that the former
(bootstrap error) tends to overestimate the test error, while the latter
(training error) tends to underestimate it. The weight 0.632 comes
from the probability of having a single observation in the bootstrap
sample.

In the case of small k in KNN, the 0.632 bootstrap may not perform
well because the overfitting is so high that the training error is too
small and the method ends up to underestimate the test error. In
order to solve the issue, one can implement 0.632+ bootstrap (NOTE:
0.632+ is only one possibility, other suggestions were accepted in the
correction).
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Exercise 2 Regression

a As in the textbook,

EP rY ´ f˚pxqs2 “ EP rY ´ fagpxq ` fagpxq ´ f˚pxqs2

“ EP rY ´ fagpxqs2 ` EP rf˚pxq ´ fagpxqs2

ě EP rY ´ fagpxqs2.

The extra error on the right-hand side comes from the variance of f˚pxq

around its mean fagpxq. Therefore true population aggregation never
increases mean squared error.

b For a large number of times B:

1. Generate a bootstrap sample;

2. Fit a tree on the bootstrapped data, each time repeating:

(a) Select randomly m ď p covariates;
(b) Split the node into two child nodes using the best covariate/split-

point among the m possibilities;

until a stopping criterion (e.g., k observations per node) is reached.

Aggregate the results of all trees.

The passage that helps improving the performance with respect to
bagging is the 2.(a), where a subset of the available covariates is chosen
before performing each tree split. This helps reducing the correlation.

c When the number of relevant variables remains constant and the num-
ber of noise variables increases, at each tree split there is a higher
chance that only noise covariates are selected among the m ă p vari-
ables. Therefore, increasing the number of noise covariates means that
there is a higher chance that the trees that form the random forest are
in large part based on pure noise.

The probability of selecting a relevant variable among the m “
?
p ones

is based on the hypergeometric distribution. In particular, the prob-
ability to select a relevant covariate is 1 - the probability of selecting
only noise ones. Therefore:

(2, 5) p “ 2 ` 5 Ñ m “ t
?
7u “ 2, and p “ 1 ´

p20qp52q

p72q
« 0.52;

(2, 25) p “ 2 ` 25 Ñ m “ t
?
27u “ 5, and p “ 1 ´

p20qp255 q

p275 q
« 0.34;

(2, 50) p “ 2 ` 50 Ñ m “ t
?
52u “ 7, and p “ 1 ´

p20qp507 q

p537 q
« 0.25;
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(2, 100) p “ 2 ` 100 Ñ m “ t
?
102u “ 10, and p “ 1 ´

p20qp102 q

p10010 q
« 0.19;

(2, 150) p “ 2 ` 150 Ñ m “ t
?
152u “ 12, and p “ 1 ´

p20qp15012 q

p15212 q
« 0.15.

Exercise 3 Classification

a The probability of getting the disease is

π “
exptβ0 ` β1 ˆ pregnant ` β2 ˆ glucoseu

1 ` exptβ0 ` β1 ˆ pregnant ` β2 ˆ glucoseu

If we insert pregnant “ 2 and glucose “ 160, knowing that β0 «

´5.751, β1 « 0.123, and β2 « 0.037, then

π “
expt´5.751 ` 0.123 ˆ 2 ` 0.037 ˆ 160u

1 ` expt´5.751 ` 0.123 ˆ 2 ` 0.037 ˆ 160u
« 0.602

Setting π “ 0.5 and glucose “ x,

0.5 ě
expt´5.751 ` 0.246 ` 0.037xu

1 ` expt´5.751 ` 0.246 ` 0.037xu

log 1 ě ´5.505 ` 0.037x

5.505 ě 0.037x

x ď 148.78

b The fact that pressure is not significant in the sparser model but is
significant in the more complex is related to the correlation between
the variables. In this particular example it seems that it is correlated
to triceps: these two covariates may provide similar information, that
for some reasons in model B is captured by triceps, in model C by
pressure. Another reason may be that pressure becomes significant
to “balance” (interaction) the effect of pedigree, that has a strong
effect (NOTE: surely the reason is NOT that pressure is correlated to
a covariate present in C and not in B, otherwise it would be the other
way around, namely pressure significant in model B, not significant
in model C).

From the figure, we can say that the best model is model C, has it
has the largest value of the area under the curve, i.e., it is the farthest
from the random guess. The model is fine, but there it seems space
for improvements, as the curve in the figure is far from the top left
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corner, where the optimal solution is. For example, from the R output
it seems that model C contains variables that are not relevant, and
may be therefore removed from the model.

c The prediction is “positive” in this case as well: it is a result of the
path “right” (180 ą 127.5), “left” (28 ă 29.95), “right” (180 ą 145.5).

The most left and most right splits have both children with the same
prediction because in both cases the estimated probabilities to be pos-
itive are smaller (left case) or larger (right case) of the threshold used
to split between positive and negative (most probably 0.5), but dif-
ferent from each other. The tree, indeed, provides an estimate of the
probability, not directly the response.

Exercise 4 Clustering

a The K-means method is a clustering approach based on the Euclidean
distance. It groups the statistical units x1, . . . , xn into K clusters,
where K is a pre-specified number, based on the distance to the clusters
means mk. It performs the clustering by applying iteratively two steps:

– allocation: each statistical units xi, i “ 1, . . . , n is allocated to
the group k by finding k “ argmink||xi ´ mk||22;

– update: each mk, k “ 1, . . . ,K is updated as the arithmetic
means of all statistical units belonging to the cluster k;

The procedure is repeated until the results stabilise.

If the value of K is not known in advance, it can be found through
the so-called “elbow-rule”: the final discrepancy is plotted against the
number of clusters, and the best number of clusters K is chosen as the
largest value for which there is a noticeable decrease in the discrepancy.
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