
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK2100 –– Machine Learning and Statistical Methods
for Prediction and Classification

Day of examination: May 31 - 2023

Examination hours: 15.00 – 19.00.

This problem set consists of 8 pages.

Appendices: List of formulas for
STK1100/STK1110 and STK2100

Permitted aids: Approved calculator

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

There are three problems:

• Problem 1 deals with regression

• Problem 2 deals with classification

• Problem 3 is a more mathematical exercise related to linear regression

The three problems can be solved independently, but you need to read through the
description of the College data in Problem 1 in order to solve Problem 2.
All subquestions are counted equally!
When commenting on results, include arguments for your answers.

Problem 1

We will in this exercise look at a dataset giving statistics for a large number of US Colleges
from the 1995 issue of US News and World Report. There are two main reponse variables
of interest:

Apps Number of applications received

Accept Number of applications accepted

There are in total 16 covariates, one categorical and 15 numerical. All of these are related
to features of the college, none are related to the individual applicants. A list of these
are given at the end of the whole exam exercise, but the actual meaning of these are not
important for answering the different questions.
We will in this problem consider models/method for predicting the number of applications
received. There are in total 776 observations, ordered alphabetically according to the
names of the colleges.

(Continued on page 2.)
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(a) ntr = 388 are randomly selected for training while the remaining 388 observations
are saved for validation.

Discuss strengths and weaknesses in dividing the data set into such subsets.

Why is it important to do this division randomly?

(b) Assume now linear regression models for prediction of Apps. The plot below shows
AIC and BIC values (based on the training data) for different number of covariates
q where for each value of q the best subset is shown.

Explain why it is reasonable that after a decrease, the curves seems to increase.

Aslo explain why it is reasonable that the q giving the minimum value of AIC is
larger than the value of q giving the minimum value if BIC.
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The table below shows a regression table based on a linear model using the 9 variables
selected by the AIC criterion (left) and 7 variables selected by the BIC criterion (right).
The root mean square error (RMSE) on the test data was 1356.735 and 1361.025 for the
AIC and BIC models, respectively.

AIC model BIC model
Estimate Std. Error t value P-value Estimate Std. Error t value P-value

(Intercept) -2889.283 468.334 -6.169 0.000 5.673 0.143 39.736 0.000
PrivateYes -602.801 245.631 -2.454 0.015 -0.619 0.086 -7.194 0.000
Enroll 2.374 0.284 8.354 0.000 0.001 0.000 17.520 0.000
Top10perc 4.496 6.521 0.689 0.491 0.006 0.002 2.455 0.015
F.Undergrad 0.178 0.056 3.207 0.001
Outstate 0.036 0.033 1.082 0.280
Room.Board 0.472 0.087 5.450 0.000 0.000 0.000 6.044 0.000
PhD -5.552 5.604 -0.991 0.322
Expend 0.060 0.020 2.960 0.003 0.000 0.000 2.335 0.020
Grad.Rate 15.641 5.367 2.914 0.004 0.010 0.002 4.845 0.000
perc.alumni -0.006 0.003 -2.085 0.038

(Continued on page 3.)
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(c) Discuss possible reasons for why some variables selected by the BIC criterion is not
included in the AIC model and vice versa.

Further, discuss why the P-values related to some of the variables that are common
in both models have (in some cases very large) different values.

Consider now generalized additive models (GAMs). For simplicity, we will only consider
the variables selected by the BIC criterion above. Further, in all cases, smoothing splines
are used. The plot below shows the nonlinear functions obtained by a fit to the training
data. The RMSE on the test data was 1263.51 in this case.
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The table below shows degrees of freedom and AIC/BIC values for the GAM fit
corresponding to the plot above (first line) and then five alternative models where the
non-linear parts are turned off on the variable listed (so Enroll lin means that Enroll is
included as a linear term while all the others have a non-linear term).

df AIC BIC
All non-lin 22.76 6688.54 6778.70
Enroll lin 16.11 6708.49 6772.28
Top10perc lin 21.00 6701.77 6784.94
Room.Board lin 22.74 6688.57 6778.66
Expend lin 19.18 6690.49 6766.45
Grad.rate lin 21.23 6692.74 6776.83

(d) Explain how the degrees of freedom are calculated for GAM models.

Do you find the AIC/BIC values reasonable based on the plots of the estimated
non-linear effects in the plot above?

We will finally consider neural networks. One hidden layer, but varying number of hidden
nodes was tried out. The decay parameter was equal to 1 in this case. For each setting, 20
repetitions were performed. The plot below shows the results where each point correspond

(Continued on page 4.)
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to the RMSE on the test data. The best RMSE value (553.82) was obtained for 200 hidden
nodes.
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(e) Discuss these results in relation to properties of neural networks.

How would you choose the number of hidden nodes to be used for your final model?
And what would you say about the performance of your chosen model?

Problem 2

We will in this problem continue to consider the College data set but now focus on the
Accept reponse variable. For this problem, denote by yi the number of applications
accepted for college i and ni the corresponding number of applicants received.

(a) Discuss why it may be reasonable to assume that yi is binomial distributed with ni

trial and a success probability pi.

Also discuss possible reasons for why the binomial distribution assumption may be
violated.

In practice we predict yi by ŷi = nip̂i where p̂i is some estimate of the probability pi. Since
the yi’s are numerical numbers, this can be seen as some kind of regression problem. We
will however see how this can be related to classification on individual applicant level.
Consider one specific college, i say. Denote by zij the binary variable equal to 1 if applicant
j on college i is accepted and 0 otherwise (so the total number of accepted yi =

∑
j zij).

In the dataset only yi is available, not zij. Assume we have some classification rule which
for each individual j we make a classification to ẑij ∈ {0, 1} and denote by ŷi =

∑
j ẑij.

Within each College we can then make a confusion matrix

zij\ẑij 0 1
0 N00

i N01
i

1 N10
i N11

i

(Continued on page 5.)
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where Nk`
i is the numbers where zij = k and ẑij = `. Note that yi = N10

i + N11
i while

ŷi = N01
i +N11

i .

(b) With a ordinary zero-one loss function on the individual level, the number of errors
would be N01

i +N10
i . However, if we are making predictions at college level we would

look at yi − ŷi instead. Express this difference by the Nk`
i terms and discuss these

results.

Assuming the zij’s were available, the likelihood can (under certain assumptions) be written
as

L =
∏
i

∏
j

p
zij
ij (1− pij)1−zij

where i is an index for college and j is an index for individuals within college. Further pij
is the probability for individual j to be accepted.

(c) Specify which assumptions this likelihood expression relies on.

The probabilities pij are assumed to be a function of the covariates available. When
all covariates are only related to college, not to individuals, argue why p̂ij = p̂i and
that the likelihood then only depend on yi and ni and not the individual zij’s.

We will now consider using trees for estimation of pi and prediction of yi. A problem with
many procedures for fitting trees is that they require the data to be available at individual
levels (zij’s), not aggregated in groups such as the data considered here (yi’s and ni’s).

(d) Explain how you can construct a training dataset which do have information on
individual level for the data at hand.

Assume now that you make a prediction for zij such that zij = 1 if the estimated
pij > 0.5 and zero otherwise. Explain why ŷi then either will be 0 or ni.

Based on this, argue why a better prediction is ŷi =
∑

j p̂ij.

The plot below shows a fitted tree to the training data (where one goes to the left if the
criterion is satisfied).

(Continued on page 6.)
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|
Top10perc < 67.5

Top25perc < 80.5

Grad.Rate < 97.5

Grad.Rate < 89.5

0.7428 0.5397

0.6257

0.6088 0.3294

The table below shows the covariates for Abilene Christian University. In addition, the
number of applicants were 1660 while the number of accepted were 1232 for this college.

Private Enroll Top10perc Top25perc F.Undergrad P.Undergrad Outstate Room.Board

Yes 721 23 52 2885 537 7440 3300

Books Personal PhD Terminal S.F.Ratio perc.alumni Expend Grad.Rate
450 2200 70 78 18.10 12 7041 60

(e) Use the tree to make a prediction on the number of accepted applicants.

Does the prediction do well in this case?

What is the main advantage of tree classifiers compared to for instance logistic
regression?

(Continued on page 7.)
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Problem 3

Assume a linear regression model

Yi = β0 +

p∑
j=1

βjxij + εi, εi
iid∼ N(0, wiσ

2), (*)

where wi are known quantities and i = 1, ..., N . We can write this model in vector/matrix
form:

Y = Xβ + ε, ε ∼ N(0, σ2W ).

Here W is a diagonal matrix with wi on the ith diagonal.

(a) Argue why the weighted least squares criterion RSS =
∑n

i=1(Yi−β0−
∑p

j=1 βjxij)
2/wi

is reasonable to use in this case.

Show that this criterion also can be written as

RSS = (Y −Xβ)TW−1(Y −Xβ).

(b) Show that the optimal estimate in this case becomes

β̂ = [XTW−1X]−1XTW−1Y

Also show that β̂ is an unbiased estimate of β.

What is the covariance matrix for β̂?

(c) Argue that you can reformulate the model (*) to a standard linear regression model
(that is with equal variances on the noise terms) by dividing both sides by

√
wi.

Based on this, argue why the results that was shown in (b) are reasonable.

Description of covariates for the College data

Private A factor with levels No and Yes indicating private or public university

Enroll Number of new students enrolled

Top10perc Pct. new students from top 10% of H.S. class

Top25perc Pct. new students from top 25% of H.S. class

F.Undergrad Number of fulltime undergraduates

P.Undergrad Number of parttime undergraduates

Outstate Out-of-state tuition

Room.Board Room and board costs

(Continued on page 8.)
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Books Estimated book costs

Personal Estimated personal spending

PhD Pct. of faculty with Ph.D.’s

Terminal Pct. of faculty with terminal degree

S.F.Ratio Student/faculty ratio

perc.alumni Pct. alumni who donate

Expend Instructional expenditure per student

Grad.Rate Graduation rate


