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Faculty of mathematics and natural sciences

Exam in: STK-2100 –– Machine Learning and Statistical
Methods for Prediction and Classification

Day of examination: Friday 31st of May

Examination hours: 15.00 – 19.00

This problem set consists of 6 pages.

Appendices: None.

Permitted aids: Approved calculator and List of formulas
for STK1100/STK1110

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1 kNN

a

Consider the k nearest neighbours method with k = 1, let us call it 1-NN.
Explain why its training error is always 0, and use this example to illustrate
the concept of overfitting.

b

We want to use our 1-NN method to estimate the value of the origin. When
the points are uniformly distributed in the p-dimensional space, we now that
the median distance between the origin and the closest point is

d(p, n) =

(
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2

1
n

) 1
p

,

with n being the sample size. Use this formula to illustrate the concept of
“curse of dimensionality”.

c

Let us tune the parameter k. After having briefly described the 0.632
bootstrap approach, explain why it may not be a good idea to use it to
tune k, especially if the optimal k is small. Suggest an alternative.

Problem 2 Regression

It is known that a drawback of regression trees is their large variability. To
mitigate this issue, bagging and random forests have been developed.

(Continued on page 2.)
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a

Assume the training observations (xi, yi), i = 1, . . . , n, independently drawn
from a distribution P. Define the “ideal” bagging estimator fag(x) =
EP [f

∗(x)], where f∗(x) is an estimator, let us say a tree, based on the
“bootstrap sample” (x∗i , y

∗
i ), i = 1, . . . , n sampled from P.

Show mathematically that the mean square error loss of an “ideal”
bagging estimator (i.e., the “population aggregator” defined above) is always
smaller than that of f∗(x).

b

Describe the Random Forests method in the form of an algorithm,
highlighting the step that makes the Random Forests “better” (in terms of
reduced variance) than bagging.

c

Consider (a modified version of) Figure 15.7 from the textbook (Elements
of Statistical Learning by Hastie, Tibshirani, and Friedman),

The figure’s caption is A comparison of random forests and gradient
boosting on problems with increasing numbers of noise variables. In each
case the true decision boundary depends on two variables, and an increasing
number of noise variables are included. Random forests uses its default value
m =

√
p. At the top of each pair is the probability that one of the relevant

variables is chosen at any split [here removed] . The results are based on 50
simulations for each pair, with a training sample of 300, and a test sample
of 500.

Based on this figure, explain why the performance of Random Forests
decreases when the number of noisy variables increases. Moreover, compute
the removed values on the top of the plot (hint: the formula for the right
distribution is in the List of formulas for STK1100/STK1110).

(Continued on page 3.)
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Problem 3 Classification

The Pima Dataset contains information about 768 women of a population,
Pima, particularly susceptible to diabetes. The response diabetes identifies
which of the persons involved in the study developed the disease (neg = no,
pos = yes). Eight continuous independent variables contain information on:

• pregnant: number of pregnancies;

• glucose: plasma glucose concentration at 2 h in an oral glucose
tolerance test;

• pressure: diastolic blod pressure (mm Hg);

• triceps: triceps skin fold thickness (mm);

• insulin: 2-h serum insulin (µU/mL);

• mass: body mass index (kg/m2);

• pedigree: diabetes pedigree function;

• age: age (years);

a

Consider the following R output of a logistic regression model, let us call it
Model A.

Call:
glm(formula = diabetes ~ pregnant + glucose, family = binomial,

data = PimaIndiansDiabetes)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.751540 0.440659 -13.052 < 2e-16 ***
pregnant 0.123287 0.025590 4.818 1.45e-06 ***
glucose 0.037080 0.003275 11.322 < 2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 993.48 on 767 degrees of freedom
Residual deviance: 784.95 on 765 degrees of freedom
AIC: 790.95

Based on this model, compute the estimated probability of developing
diabetes for a woman who went through 2 pregnancies and has a plasma
glucose concentration of 160. How low should the level of plasma glucose
concentration be to have a probability of developing the disease less than
0.5?

(Continued on page 4.)
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b

When we add other covariates to the model, we obtain the following models:

• Model B

Call:
glm(formula = diabetes ~ pregnant + glucose + triceps + age +

pressure, family = binomial, data = PimaIndiansDiabetes)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.797930 0.520568 -11.138 < 2e-16 ***
pregnant 0.110836 0.030391 3.647 0.000265 ***
glucose 0.036471 0.003371 10.818 < 2e-16 ***
triceps 0.012646 0.005739 2.204 0.027545 *
age 0.013166 0.009039 1.457 0.145224
pressure -0.007709 0.004729 -1.630 0.103064
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 993.48 on 767 degrees of freedom
Residual deviance: 777.95 on 762 degrees of freedom
AIC: 789.95

• Model C

Call:
glm(formula = diabetes ~ ., family = binomial, data = PimaIndiansDiabetes)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.4046964 0.7166359 -11.728 < 2e-16 ***
pregnant 0.1231823 0.0320776 3.840 0.000123 ***
glucose 0.0351637 0.0037087 9.481 < 2e-16 ***
pressure -0.0132955 0.0052336 -2.540 0.011072 *
triceps 0.0006190 0.0068994 0.090 0.928515
insulin -0.0011917 0.0009012 -1.322 0.186065
mass 0.0897010 0.0150876 5.945 2.76e-09 ***
pedigree 0.9451797 0.2991475 3.160 0.001580 **
age 0.0148690 0.0093348 1.593 0.111192
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 993.48 on 767 degrees of freedom
Residual deviance: 723.45 on 759 degrees of freedom
AIC: 741.45

(Continued on page 5.)
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Explain why the covariate pressure does not seem to have an effect on
the response in model B, but it seems to have an effect in model C.

Moreover, using the following plot,
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explain which of these three models you would considered the “best” and
why. Is any of them really satisfactory? Why?

c

Consider the following classification tree, estimated on the same data,
|

glucose < 127.5

age < 28.5

mass < 30.95 mass < 26.35

glucose < 99.5

pedigree < 0.561

pregnant < 6.5

mass < 29.95

glucose < 145.5glucose < 157.5

neg neg neg

neg

neg

pos pos

neg pos
pos pos

(Continued on page 6.)
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Provide the estimate for the same individual of point a (2 pregnancies,
glucose = 160), supposing that her body mass index is 28 kg/m2. Indicate
how you have found that value.

Moreover, explain why the most left and the most right splits in the tree
plot are there, despite both leaves give the same result (both neg and both
pos, respectively).

Problem 4 Clustering

a

Describe the K-means method, including a possible way to find the best K.
Why cannot we use cross-validation?

THE END


