UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in STK2130 — Modelling by Stochastic

Processes.

Day of examination: Wednesday June 11th 2014.

Examination hours: 14.30 – 18.30. This problem set consists of 2 pages.

Appendices: None.

Permitted aids: Approved calculator. "Formelsamling"

for STK1100 and STK1110

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

A Markov chain $\{X_n, n = 0, 1, 2, ...\}$ has state space $\{1, 2, 3, 4\}$ and transition probability matrix

$$\mathbf{P} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0.3 & 0.2 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.4 & 0.6 \end{vmatrix}$$

- a) Describe the Markov chain by a diagram.
- b) Find all communicating classes of the Markov chain. Which are closed?
- c) Which classes are recurrent and which classes are transient? Find the period of the state i = 3.
- d) Calculate for all i, j = 1, ..., 4 the probability that $X_2 = j$ given $X_0 = i$.
- e) Conditioned upon the chain has entered one of the states 3 or 4 find the stationary distribution over these two states.
- f) Starting in state 2 find the expected time until entering one of the recurrent states.

(Continued on page 2.)

g) Starting in state 2 what is the probability of ultimate absorption in the states $\{3, 4\}$?

Problem 2

- a) What characterizes a birth and death process with nonnegative parameters $\{\lambda_n\}_{n=0}^{\infty}$ and $\{\mu_n\}_{n=1}^{\infty}$?
- b) Assume that the limiting probabilities $\{P_n\}_{n=0}^{\infty}$ exist. Give the balance equations which are satisfied by these limiting probabilities.
- c) Show that

$$\lambda_n P_n = \mu_{n+1} P_{n+1}, n = 0, 1, \dots$$

- d) Find the limiting probabilities $\{P_n\}_{n=0}^{\infty}$. Give a necessary and sufficient condition for these limiting probabilities to exist.
- e) Consider the following queueing model with discouragement, where $\lambda_n = \lambda/(n+1), n=0,1,\ldots$ and $\mu_n = \mu, n=1,2,\ldots$ Why is it called a queueing model with discouragement? When does the distribution of the limiting probabilities $\{P_n\}_{n=0}^{\infty}$ for this model exist? Find it.

END