UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: \quad STK2130 - Modelling by Stochastic Processes. Solution.
Day of examination: Wednesday June 11th 2014.
Examination hours: 14.30-18.30.
This problem set consists of 4 pages.
Appendices: None.
Permitted aids: Approved calculator. "Formelsamling" for STK1100 and STK1110

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a) The diagram is given by:

b) As one observes from the diagram the communicating classes are given by $\{1\},\{2\}$ and $\{3,4\} .\{1\}$ and $\{3,4\}$ are closed.
c) Finite and closed classes are recurrent. Hence, $\{1\}$ and $\{3,4\}$ are recurrent. Since $\{2\}$ is not closed, it must be transient. We see from the diagram that $P_{33}^{n}>0$ for all $n=1,2, \ldots$. Hence, the state $i=3$ is aperiodic.
d) We have for all $i, j=1, \ldots, 4$

$$
P\left(X_{2}=j \mid X_{0}=i\right)=P_{i j}^{2} .
$$

Here $P_{i j}^{2}$ are the entries obtained by matrix multiplying the transition probability matrix P with itself. This leads to

$$
\mathbf{P P}=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.36 & 0.04 & 0.35 & 0.25 \\
0 & 0 & 0.45 & 0.55 \\
0 & 0 & 0.44 & 0.56
\end{array}\right|
$$

e) When $X_{0}=3$ or $X_{0}=4$ the process starts in a recurrent and finite class with period 1. Hence, this Markov chain is ergodic and the stationary probabilities π_{3} and π_{4} satisfy the following equations

$$
\begin{gathered}
\pi_{3}=\pi_{3} 0.5+\pi_{4} 0.4 \\
\pi_{3}+\pi_{4}=1
\end{gathered}
$$

This gives $\pi_{3}=4 / 9$ and $\pi_{4}=5 / 9$.
f) Starting in state 2 we shall find the expected time, ν_{2}, until entering one of the recurrent states. We have

$$
\nu_{2}=1+\nu_{2} 0.2,
$$

which gives $\nu_{2}=1.25$. Alternatively, we have

$$
\nu_{2}=(1-0.2)^{-1}=1 / 0.8=1.25
$$

g) Starting in state 2 we shall find the probability, q_{2}, of ultimate absorption in the states $\{3,4\}$. We have

$$
q_{2}=q_{2} 0.2+0.5,
$$

which gives $q_{2}=5 / 8$.

Problem 2

a) See page 374 in Ross (2010). Essentially, all times to births and deaths are independent and exponentially distributed random variables. When there are n persons in the system the birth rate is $\lambda_{n}, n=0,1, \ldots$ whereas the death rate is $\mu_{n}, n=1,2, \ldots$.
b) See page 392 in Ross (2010). By letting the rate of leaving a state be equal to the rate of entering the same state under stationarity we arrive at the following balance equations

$$
\begin{gathered}
\lambda_{0} P_{0}=\mu_{1} P_{1} \\
\left(\lambda_{n}+\mu_{n}\right) P_{n}=\lambda_{n-1} P_{n-1}+\mu_{n+1} P_{n+1}, \quad n=1,2, \ldots
\end{gathered}
$$

c) The equality

$$
\lambda_{n} P_{n}=\mu_{n+1} P_{n+1}, \quad n=0,1, \ldots
$$

follows since under stationarity the left hand side is the rate of moving one step upwards from n to $n+1$ whereas the right hand side is the rate of moving one step downwards from $n+1$ to n. This argument is not given in Ross (2010). The argument in Ross (2010) is given on page 392. Assume that the equality above is true for $n-1$. Hence,

$$
\lambda_{n-1} P_{n-1}=\mu_{n} P_{n}, \quad n=1,2, \ldots
$$

Adding this to the general equality given in b) we get the desired equality for n.
d) The last equation in c) can be written

$$
P_{n}=\frac{\lambda_{n-1}}{\mu_{n}} P_{n-1}, \quad n=1,2, \ldots
$$

By repeated use of this equation we get

$$
P_{n}=\frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}} P_{0}
$$

By using the fact that $\sum_{n=0}^{\infty} P_{n}=1$ we get

$$
P_{0}=\frac{1}{1+\sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}}}
$$

Hence,

$$
P_{n}=\frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}\left[1+\sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}}\right]}, \quad n=1,2, \ldots
$$

A necessary and sufficient condition for these limiting probabilities to exist is

$$
\sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}}<\infty
$$

e) $\lambda_{n}=\lambda /(n+1), n=0,1, \ldots$ is strictly decreasing in n. Hence, in this model customers are discouraged from joining long queues. Accordingly we have a queueing model with discouragement. Introduce $\rho=\lambda / \mu$. Then

$$
\sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \ldots \lambda_{1} \lambda_{0}}{\mu_{n} \mu_{n-1} \ldots \mu_{2} \mu_{1}}=\sum_{n=1}^{\infty} \rho^{n} / n!=\exp (\rho)-1<\infty
$$

Hence, the limiting distribution for this model always exists irrespective of the values of λ and μ. We have

$$
P_{n}=\frac{\rho^{n}}{n!(1+\exp (\rho)-1)}=\frac{\rho^{n}}{n!} \exp (-\rho), \quad n=0,1, \ldots
$$

This is a Poisson distribution with parameter $\rho=\lambda / \mu$.

