UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK2130 — Modelling by Stochastic Processes
Day of examination:	Friday 17 June 2016
Examination hours:	09.00-13.00
This problem set consists of 3 pages.	
Appendices:	None
Permitted aids:	Approved calculator. ''Formelsamling til STK1100 og STK1110''

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider a discrete time Markov Chain with state space $\{0, 1, 2, 3\}$. The matrix of one-step transition probabilities is

$$P = \begin{pmatrix} 0.6 & p & 0 & p \\ 0 & 0.2 & 0.8 & 0 \\ 0 & 0 & 0 & q \\ 0 & 0 & 0.3 & 0.7 \end{pmatrix}$$

a

Determine p and q.

\mathbf{b}

Determine the classes of the Markov Chain. For each class, determine whether it is transient or recurrent.

С

Argue that the limits $\lim_{n\to\infty} P_{ij}^n$ exist for j=2 and j=3. Find these limits.

\mathbf{d}

Let T be the time until the chain reaches a recurrent state. Find $\nu_i = \mathbf{E}[T \mid X(0) = i]$ for all transient states *i*.

Problem 2

Consider a service counter with only one server. Customers arrive according to a Poisson process with rate λ . If the server is free, the arriving customer

(Continued on page 2.)

get served immediately. If the server is occupied, and there are less than N people waiting in line, the arriving customer joins the queue. If however there are N people waiting in line, then an arriving customer leaves without joining the queue. When the server finishes serving a customer, the customer leaves and if there is a queue, the next customer in line gets served. The service times are assumed to be independent, exponential random variables with rate μ . Let X(t) be the number of customers in the system at time t. You can assume that $\{X(t), t \ge 0\}$ is a continuous time Markov Chain with homogeneous transition probabilities

$$P_{ij}(t) = P(X(t) = j \mid X(0) = i) = P(X(t+s) = j \mid X(s) = i)$$

a

Give an intuitive explanation for this being a birth and death process with state space $\{0, 1, \ldots, N+1\}$ and birth and death rates

$$\mu_0 = 0$$

$$\mu_i = \mu, \quad 1 \le i \le N + 1$$

$$\lambda_i = \lambda, \quad 0 \le i \le N$$

$$\lambda_{N+1} = 0$$

 \mathbf{b}

Let $P_j \equiv \lim_{t\to\infty} P_{ij}(t)$. Put up the set of balance equations that can be solved to find $P_j, j = 0, \ldots, N+1$, without solving them.

С

Put up the infinitesimal generator matrix R.

d

Consider now the special case that N = 0, hence if the server is busy, arriving customers will not wait in line, but just leave immediately. The solution to the Kolmogorov backward and forward equations in matrix form is

$$P(t) = e^{Rt} = \sum_{n=0}^{\infty} R^n \frac{t^n}{n!}$$

It can be shown that we can write $R = ULU^{-1}$, where

$$L = \begin{pmatrix} 0 & 0 \\ 0 & -(\lambda + \mu) \end{pmatrix},$$
$$U = \begin{pmatrix} 1 & -\lambda \\ 1 & \mu \end{pmatrix},$$
$$U^{-1} = \frac{1}{\lambda + \mu} \begin{pmatrix} \mu & \lambda \\ -1 & 1 \end{pmatrix},$$

(Continued on page 3.)

and hence

$$P(t) = e^{Rt} = Ue^{Lt}U^{-1},$$

where

$$e^{Lt} = \begin{pmatrix} e^0 & 0\\ 0 & e^{-(\lambda+\mu)t} \end{pmatrix}.$$

Find $\lim_{t\to\infty} P(t)$ expressed by λ and μ . What do we call this distribution defined by P_0 and P_1 ?

Problem 3

Let $\{X(t), t \ge 0\}$ be a Brownian motion with drift coefficient μ and variance parameter σ^2 , which means that (i) X(0) = 0, (ii) all the increments X(t) - X(s) are stationary and independent and (iii) $X(t) - X(s) \sim$ $N(\mu(t-s), \sigma^2(t-s)), 0 \le s < t.$

a

Show that

$$B(t) = \frac{X(t) - \mu t}{\sigma}$$

is a standard Brownian motion.

\mathbf{b}

What is the distribution of $B(s) + B(t), s \le t$?

THE END