UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: STK2130 - Modelling by Stochastic Processes: BRIEF OUTLINE OF SOLUTIONS
Day of examination: Friday 17 June 2016
This problem set consists of 3 pages.

Appendices: None
Permitted aids: Approved calculator. "Formelsamling til STK1100 og STK1110"

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a

Because all rows in a transition probability matrix must sum to 1 , we have $p=0.2$ and $q=1$

b

The only states that communicate are 2 and 3 , hence we have three classes: $\{0\},\{1\}$ and $\{2,3\} .\{0\}$ and $\{1\}$ are transient and $\{2,3\}$ is recurrent.

C

The recurrent class $\{2,3\}$ is irreducible, positive recurrent and aperiodic. Hence for $j=2,3$ the limiting probabilities $\lim _{n \rightarrow \infty} P_{i j}^{n}$ exist and equal the stationary probabilities π_{j}. They can be found by solving $\pi_{2}=0.3 \pi_{3}$ and $\pi_{2}+\pi_{3}=1$. Hence, $\pi_{2}=\frac{3}{13}, \pi_{3}=\frac{10}{13}$.
d
"One-step-ahead" analysis:

$$
\begin{aligned}
& \nu_{1}=0.2\left(\nu_{1}+1\right)+0.8 \Rightarrow \nu_{1}=1.25 \\
& \nu_{0}=0.6\left(\nu_{0}+1\right)+0.2 *\left(\nu_{1}+1\right)+0.2 \Rightarrow \nu_{0}=3.125
\end{aligned}
$$

Problem 2

a

There can be a minimum of 0 customers in the system, or a maximum of $N+1$ customers in the system (one being served plus N in the queue). Hence
(Continued on page 2.)
$S=\{0,1, \ldots, N+1\}$. Transitions from state i may go only to either state $i+1$ (for $0 \leq i<N+1$) or $i-1$ (for $0<i \leq N+1$), hence it is a birth and death process. When there are $i=0, \ldots, N$ customers in the system, a new arriving customer will go directly into service if $i=0$, or otherwise join the queue, and the arrivals follow a Poisson process with rate λ. Hence, $\lambda_{i}=\lambda, i=0, \ldots, N$. Otherwise, $\lambda_{i}=0$. When there are $i=1, \ldots, N+1$ customers in the system, one customer is being served and the service time is exponential with rate μ, hence $\mu_{i}=\mu, i=1, \ldots, N+1$. Obviously $\mu_{0}=0$.
b

$$
\begin{aligned}
\lambda P_{0} & =\mu P_{1} \\
(\lambda+\mu) P_{i} & =\lambda P_{i-1}+\mu P_{i+1}, 1 \leq i \leq N \\
\mu P_{N+1} & =\lambda P_{N}
\end{aligned}
$$

c

R is the $(N+2) \times(N+2)$ matrix, where row $i+1$ represents state i, and column $j+1$ represents state j, with elements
$r_{11}=-\lambda, r_{12}=\lambda, r_{1 j}=0, j \notin\{1,2\}$
$r_{N+2, N+1}=\mu, r_{N+2, N+2}=-\mu, r_{N+2, j}=0, j \notin\{N+1, N+2\}$
$r_{i, i-1}=\mu, r_{i, i}=-(\lambda+\mu), r_{i, i+1}=\lambda, r_{i j}=0,1<i<N+2, j \notin\{i-1, i, i+1\}$
Alternatively, the matrix can be given in this way

$$
R=\left(\begin{array}{cccccc}
-\lambda & \lambda & 0 & \cdots & & 0 \\
\mu & -(\lambda+\mu) & \lambda & 0 & \cdots & 0 \\
0 & \mu & -(\lambda+\mu) & \lambda & 0 & \cdots \\
\vdots & & & \vdots & & \\
0 & \cdots & & 0 & \mu & -\mu
\end{array}\right)
$$

d

$$
P(t)=U e^{L t} U^{-1}=\left(\begin{array}{cc}
1 & -\lambda \\
1 & \mu
\end{array}\right)\left(\begin{array}{cc}
e^{0} & 0 \\
0 & e^{-(\lambda+\mu) t}
\end{array}\right) \frac{1}{\lambda+\mu}\left(\begin{array}{cc}
\mu & \lambda \\
-1 & 1
\end{array}\right)
$$

which means that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} P(t) & =\frac{1}{\lambda+\mu}\left(\begin{array}{cc}
1 & -\lambda \\
1 & \mu
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\mu & \lambda \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{\lambda+\mu}\left(\begin{array}{cc}
\mu & \lambda \\
\mu & \lambda
\end{array}\right)
\end{aligned}
$$

The distribution defined by P_{0} and P_{1} is the Bernoulli distribution with parameter $p=\frac{\lambda}{\lambda+\mu}$.

Problem 3

a

Obviously $B(0)=0$. Since all the increments $X(t)-X(s)$ are stationary and independent, all the increments $B(t)-B(s)$ are also stationary and independent. $\mathrm{E}[B(t)]=\frac{\mu t-\mu t}{\sigma}=0$ and $\operatorname{Var}[B(t)]=\frac{\sigma^{2} t}{\sigma^{2}}=t$, hence $B(t)-B(s) \sim N(0, t-s), 0 \leq s<t$.

b

We can write $B(s)+B(t)=2 B(s)+B(t)-B(s)$. We have $2 B(s) \sim N(0,4 s)$ and $B(t)-B(s) \sim N(0, t-s)$. Since $B(s)$ and $B(t)-B(s)$ are independent (because of independent increments), we then get $B(s)+B(t) \sim N(0,3 s+t)$.

