UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK2130-Modelling by Stochastic Processes				
Day of examination:	Friday, June 9th, 2017				
Examination hours:	14.30 - 18.30				
This problem set cons	sists of 3 pages.				
Appendices:	None				
Permitted aids: Approved calculator. ''Formelsamling til STK1100 og STK1110'					

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider a discrete time Markov Chain with state space $\{1, 2, 3, 4, 5\}$. The matrix of one-step transition probabilities is

	$\lceil p \rceil$	1/2	1/2	0	0]
	0	1/4	1/4	1/2	0
P =	0	1/2	1/2	0	0
	0	0	0	1/4	q
	0	0	0	r	1/2

а

Determine p, q and r.

 \mathbf{b}

What is the probability, starting from state 2, to be in state 2 after 2 transitions? And starting from state 3?

С

Define a recurrent and a transient state. Which are the transient and the recurrent states for this Markov Chain?

d

Compute the long-run proportions for this Markov Chain

e

What is the probability, starting from state 1, to eventually enter in $\{4,5\}$?

(Continued on page 2.)

Problem 2

Consider a Markov Chain defined on the vertexes of a triangular. Suppose that the process can move anti-clockwise to the next vertex with probability p and clockwise to the next vertex with probability 1 - p. Here 0 .

\mathbf{a}

Write the matrix of one-step transition probabilities for this Markov Chain.

\mathbf{b}

Show that the Markov Chain is ergodic and compute the limiting probabilities.

с

Compute for n large the probabilities $P[X_n = 1, X_{n+1} = 2]$ and $P[X_n = 2, X_{n+1} = 1]$.

d

For which p the Markov chain is reversible?

Problem 3

In a resort for downhill skiing customers arrives to a ski-lift station following a Poisson process with mean 4 per minute. A new lift arrives every 5 seconds, and if there is a person waiting it is occupied (there is only one place per lift), otherwise it will leave empty. If we denote with t_i the time at which the i-th lift is available, $t_i = 5i$. Suppose that at t=0 the lift left empty.

a

What is the distribution of inter arrival times between people at the station?

\mathbf{b}

What is the distribution of the number of customers arriving between two successive lifts?

с

What is the probability of the first lift leaving occupied and having simultaneously exactly one person waiting in the line?

\mathbf{d}

What is the probability that the second lift leaves empty?

(Continued on page 3.)

Problem 4

а

What characterizes a birth and death process with nonnegative parameters $\{\lambda_n\}_{n=0}^{\infty}$ and $\{\mu_n\}_{n=1}^{\infty}$?

\mathbf{b}

What is the total death rate when death occurs for each member at the same exponential rate μ ? And what is the formula for the total birth rate in the case that each element gives birth at the same exponential rate λ and there is an exponential rate of increase θ of the population due to an external source?

С

In the case of the last point, show that the expected size of the population at time t, M(t) = E[X(t)], is

$$M(t) = \frac{\theta}{\lambda - \mu} [e^{(\lambda - \mu)t} - 1] + ie^{(\lambda - \mu)t}$$
(1)

supposing that the population size at 0 is equal to i and $\lambda \neq \mu$.

(hint: a possible way is to proceed as follows:

- compute M(t+h) as a conditional expectation E[X(t+h)] = E[E[X(t+h)|X(t)]] (the probabilities of the three events with non-negligible probabilities X(t+h) = X(t) + 1, X(t+h) = X(t) - 1 and X(t+h) = X(t) can be derived directly from the definition of Poisson process);

- compute the difference quotient $\frac{M(t+h)-M(t)}{h}$;

- take the limit $(h \rightarrow 0)$ and solve the differential equation (remember that M(0) = i.)

d

Interpret equation (1), in particular the contributions of the terms $\frac{\theta}{\lambda-\mu}[e^{(\lambda-\mu)t}-1]$ and $ie^{(\lambda-\mu)t}$ and the influence of the sign of $(\lambda-\mu)$.

THE END