UNIVERSITY OF OSLO Faculty of mathematics and natural sciences

Exam in: \quad STK2130 - Modelling by Stochastic Processes
Day of examination: Friday, June 9th, 2017
Examination hours: 14.30-18.30
This problem set consists of 3 pages.
Appendices: None
Permitted aids: Approved calculator.
"Formelsamling til STK1100 og STK1110"

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider a discrete time Markov Chain with state space $\{1,2,3,4,5\}$. The matrix of one-step transition probabilities is

$$
P=\left[\begin{array}{ccccc}
p & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 1 / 4 & 1 / 4 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & q \\
0 & 0 & 0 & r & 1 / 2
\end{array}\right]
$$

a

Determine p, q and r.

b

What is the probability, starting from state 2 , to be in state 2 after 2 transitions? And starting from state 3 ?

c

Define a recurrent and a transient state. Which are the transient and the recurrent states for this Markov Chain?
d

Compute the long-run proportions for this Markov Chain
e
What is the probability, starting from state 1 , to eventually enter in $\{4,5\}$?

Problem 2

Consider a Markov Chain defined on the vertexes of a triangular. Suppose that the process can move anti-clockwise to the next vertex with probability p and clockwise to the next vertex with probability $1-p$. Here $0<p<1$.
a
Write the matrix of one-step transition probabilities for this Markov Chain.

b

Show that the Markov Chain is ergodic and compute the limiting probabilities.

c

Compute for n large the probabilities $P\left[X_{n}=1, X_{n+1}=2\right]$ and $P\left[X_{n}=\right.$ $\left.2, X_{n+1}=1\right]$.

d

For which p the Markov chain is reversible?

Problem 3

In a resort for downhill skiing customers arrives to a ski-lift station following a Poisson process with mean 4 per minute. A new lift arrives every 5 seconds, and if there is a person waiting it is occupied (there is only one place per lift), otherwise it will leave empty. If we denote with t_{i} the time at which the i-th lift is available, $t_{i}=5 i$. Suppose that at $\mathrm{t}=0$ the lift left empty.

a

What is the distribution of inter arrival times between people at the station?

b

What is the distribution of the number of customers arriving between two successive lifts?

C

What is the probability of the first lift leaving occupied and having simultaneously exactly one person waiting in the line?

d

What is the probability that the second lift leaves empty?

Problem 4

a

What characterizes a birth and death process with nonnegative parameters $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ and $\left\{\mu_{n}\right\}_{n=1}^{\infty}$?

b

What is the total death rate when death occurs for each member at the same exponential rate μ ? And what is the formula for the total birth rate in the case that each element gives birth at the same exponential rate λ and there is an exponential rate of increase θ of the population due to an external source?

c

In the case of the last point, show that the expected size of the population at time $t, M(t)=E[X(t)]$, is

$$
\begin{equation*}
M(t)=\frac{\theta}{\lambda-\mu}\left[e^{(\lambda-\mu) t}-1\right]+i e^{(\lambda-\mu) t} \tag{1}
\end{equation*}
$$

supposing that the population size at 0 is equal to i and $\lambda \neq \mu$.
(hint: a possible way is to proceed as follows:

- compute $M(t+h)$ as a conditional expectation $E[X(t+h)]=E[E[X(t+$ $h) \mid X(t)]]$ (the probabilities of the three events with non-negligible probabilities $X(t+h)=X(t)+1, X(t+h)=X(t)-1$ and $X(t+h)=X(t)$ can be derived directly from the definition of Poisson process);
- compute the difference quotient $\frac{M(t+h)-M(t)}{h}$;
- take the limit $(h \rightarrow 0)$ and solve the differential equation (remember that $M(0)=i$.)

d

Interpret equation (1), in particular the contributions of the terms $\frac{\theta}{\lambda-\mu}\left[e^{(\lambda-\mu) t}-1\right]$ and $i e^{(\lambda-\mu) t}$ and the influence of the sign of $(\lambda-\mu)$.

THE END

