UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK2130-Modelling by stochastic processes
Day of examination:	Monday 11. june 2018
Examination hours:	14.30-18.30
This problem set consists of 3 pages.	
Appendices:	None
Permitted aids:	Formulae note for STK1100 and STK1110. Accepted calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider a discrete time Markov chain $\{X_n, n = 0, 1, 2, 3, ...\}$ with state space $\{1, 2, 3, 4\}$ and transition probability matrix

$$P = \begin{bmatrix} p & q & 0 & 0\\ 0.3 & 0.2 & r & 0\\ 0 & 0 & 0.4 & 0.6\\ 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

parametrised by p, q, r. That is, p, q, r are possible numbers such that P is a transition probability matrix. The following questions must be answered in terms of the possible values of the parameters, which may change the basic structure of the chain as they vary. **Hint:** This Markov chain can be parametrised solely by the values of the parameter q.

a (weight 10p)

Describe the Markov chain using a diagram.

b (weight 10p)

Find all communicating classes of the Markov chain. Which are closed? Are there any absorbing states?

 \mathbf{c} (weight 10p)

Define a recurrent and a transient state. Which are the recurrent and the transient states?

 \mathbf{d} (weight 10p)

Calculate for all i, j = 1, ..., 4 the probability that $X_2 = j$ given that $X_0 = i$

(Continued on page 2.)

e (weight 10p)

Conditioned upon the chain has entered one of the states 3 or 4 find the stationary distribution over these two states.

\mathbf{f} (weight 10p)

Starting in state 2 find the expected time until entering one of the recurrent states

\mathbf{g} (weight 10p)

Starting in state 2 what is the probability of ultimate absorption in the states $\{3, 4\}$?

Problem 2

a (weight 10p)

Define a Poisson proces $\{N(t)\}_{t\geq 0}$ with rate $\lambda > 0$ using the infinitesimal properties of its increments (if you give an alternative definition of a Poisson process, not using the infinitesimal properties of the increments, you will only get 75% of the points).

\mathbf{b} (weight 10p)

Let $g(t) = \mathbb{E}\left[e^{-uN(t)}\right], u \ge 0$ be the Laplace transform of N(t). Prove that g(t) satisfies the following differential equation

$$g'(t) = g(t) \lambda (e^{-u} - 1), \qquad g(0) = 1,$$

and conclude that, for t > 0, N(t) is distributed as a Poisson random variable with parameter λ , i.e.,

$$P(N(t) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \qquad k = 0, 1, 2, 3, \dots$$

c (weight 10p)

Let S_n be the *n*-th arrival time for $\{N(t)\}_{t\geq 0}$. Prove that the density of S_n is given by

$$f_{S_n}(t) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, \qquad t > 0.$$

\mathbf{d} (weight 10p)

Patients arrive at the waiting room of a doctor's office according to a Poisson process with rate 6 patients an hour. The doctor starts to examine the patients only when the third patient arrives.

- 1. Compute the expected time from the opening of the doctor's office until the first patient starts to be examined.
- 2. Compute the probability that in the first opening hour the doctor does not start examining at all.

Problem 3

a (weight 10p)

Define a standard Brownian motion $\{B(t)\}_{t\geq 0}$.

 \mathbf{b} (weight 10p)

Compute the autocovariance function of $\{B(t)\}_{t\geq 0}$, that is, $\mathbb{E}[B_tB_s]$ for $s,t\geq 0$.

 \mathbf{c} (weight 10p)

Let $a \ge 0$, show that $\{X(t) = B(t + a) - B(a)\}_{t\ge 0}$ is a standard Brownian motion.

SLUTT