UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: STK2130 — Modelling by stochastic processes
Day of examination: Monday 11. june 2018

Examination hours:  14.30—-18.30

This problem set consists of 7 pages.

Appendices: None

Permitted aids: Formulae note for STK1100 and STK1110.
Accepted calculator

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a (weight 10p)

Note that r + 0.3 + 0.2 = 1, which implies that » = 0.5. On the other hand,
p,q € [0,1] must satisfy p + ¢ = 1 and, hence, we can write p = 1 — ¢ and
leave ¢ € [0, 1] as the only free parameter. Qualitatively, there are two main
cases, ¢ = 0 and ¢ € (0,1].

1. Case ¢ =0.
0.2 0.4 0.5
r=0.5 0.6
1 C@
0.3 0.5
2. Case ¢ € (0,1].
0.2 0.4 0.5
q r=0.5 0.6

0.3 0.5

b (weight 10p)
We have:

1. Case ¢ = 0. From the diagram is clear that the communicating classes
are {1},{2},{3,4}. In addition {3,4} is closed and 1 is an absorbing
state.

(Continued on page 2.)
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2. Case ¢ € (0,1]. From the diagram is clear that the communicating
classes are {1,2},{3,4}. In addition {3,4} is closed and there are no
absorbing states.

C

For any state ¢ we let f; denote the probability that, starting in state ¢, the
process will ever reenter state i. State ¢ is said to be recurrent if f; = 1 and
transient if f; < 1. Recurrence/transience is a communicating class property.
Finite and closed communicating classes are recurrent. If a communicating
class is not closed it must be transient.

1. Case ¢ =0. {1} and {3,4} are recurrent. {2} is transient.

2. Case ¢ € (0,1]. {1,2} is transient and {3,4} is recurrent.

d (weight 10p)
We have that for all ¢,j =1, ..., 4

P(Xy=j|Xo=1)= Pfj.

The two-step transition probability matrix is given by

p?+03¢ 02¢+pg 05¢ O

0.0640.3p 0.04+0.3¢ 0.3 0.3
0 0 0.46 0.54
0 0 0.45 0.55

P2=pp=

e (weight 10p)

When Xy = 3 or Xg = 4 the process starts in a recurrent and finite class.
Hence, we can regard the states {3,4} as an irreducible finite state Markov
chain with transition probability matrix

0.4 0.6
@= < 0.5 0.5 ) '
As any irreducible finite state Markov chain is positive recurrent, the

invariant distribution exists and is given by the solution of the following
system of linear equations

w3 = 0.4mw3 + 0.57y4,

w3 + my = 1,
which is
5
w3 = — = —.
ST ™M

(Continued on page 3.)
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f  (weight 10p)

We have that the vector k4 of mean hitting times of a subset of states A is
given by the minimal non-negative solution to the system

EA=0, €A,

kl=1+4) Pk  i¢A
igA

The answer for this question is kf.
1. Case ¢ =0. Let A={1} U {3,4}, then
k3 =14 Pyokd =14 0.2k,
which yields k4! = 10/8.
2. Case ¢ € (0,1]. Let A={3,4}, then

k=14 Pk + Piokd =1+ (1 — @)kt + gk
k3 =1+ Poiki + Poiki =1+ 0.3k 4 0.2k3,

which yields

pA 2(q+0.8)
q
ks =

g (weight 10p)

We have that the vector h* of hitting probabilities of a subset of states A is
given by the minimal non-negative solution to the system

it =1, i€ A,
Wt =Y "Phi i A,
J

The answer for this question is 74 with A = {3,4}.

1. Case ¢ =0. Let A={3,4}, then

hyt=hi =1,
hit = Piihit + Piaohg + Pishy + Prghy = b
hg' = Py1hi' + Pyshy + Pyshi + Pyshy
= 0.3h4" +0.2h4 +0.5.
The first equation hf* = h{‘ gives us no information. However, as the

state 1 is absorbing we have that h{' = 0. Substituting this value in
the last equation gives hs = 5/8.

(Continued on page 4.)
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2. Case ¢ € (0,1]. Let A={3,4}, then
A
R4 =hi =1,
hit = Py 1hit 4 Pyohdt 4 Py shd 4 Py ahi
= (1—-q)hi' +qh3
hA = P271h114 + P2,2h124 =+ P273hé4 + f)274h214
= 0.3hi' + 0.2k + 0.5,
which yields h{* = h{ = 1. Note that we do not need to solve
the previous equation. Actually, as {1,2} is transient and {3,4} is
recurrent we must have hft = b4l = 1.
Problem 2

A suggested solution is:

a

(weight 10p)

A counting process {N (1)}, is said to be a Poisson process with rate A > 0
if the following axioms hold:

b

1.

2
3
4

N(0) = 0.

. {N ()}, has independent increments.
. P(N(t+h)—N(@t)=1) = M +o(h).
. P(N(t+h)—N(t)>2)=o(h).

(weight 10p)

We start computing g (¢ + h).

where in the last equality we have used axiom ii.

g(t+h)=E {(uN(Hh)]
) [e—u{N<t+h>—N(t>+N(t>}}

— g()E [e—u{N(t-&-h)—N(t)}}

)

. Next we compute an

o (h) approximation for E [e’“{N(Hh)’N(t)}} . To simplify the notation let
Z =N (t+h)— N (t). First note that by axioms iii. and iv.

P(Z=0)=1-{P(Z=1)=2+P(Z>2)}
=1—{M+o(h)+o(h)}

obtain

=1—-Xv+o(h).
Therefore, conditioning on the events {Z = 0},{Z = 1} and {Z > 2} we
Ele "] =E[e"?|Z=0]P(Z=0)+E[e"/|Z=1]P(Z
+E[e"4|Z>2]P(Z>2)

=1x(1=M+o(h)+e“x(A+o(h)+E[e "4 Z>2] xo(h)

=1+A(e"—=1)h+o(h).

(Continued on page 5.)
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Hence,
gt+h)=g@){1+X(e™—=1)h+o(h)},

which can be written as

g(t+h})L_g(t> :g(t))\(e_u_l)_FO(hh)?

and letting h — 0 we can conclude that g (¢)satisfies the desired differential
equation. This differential equation is linear and has the solution g

g(t) =g (O

_ e)\(e_“—l)t.

On the other hand, the Laplace transform of a Poisson random variable
characterizes its distribution. Hence, we only need to check that the Laplace
transform of W ~ Poiss (A) coincides with g (¢). We have

E [e—uW] — i G_Uke_)\tM

k!
k=0
Y G (efu)\t)k
=€ Z k!
k=0
_ e—)xtee*“)\t

— e)\(e_“fl)t =g (t) )

c (weight 10p)

As {N (t) > n} if and only if {S,, <t} one has that the distribution function
of .S, is given by

Fs, (t) = P(S, <t)=P (N (t) > n) = ie—kt(/\t

Taking derivatives we get its density

_ )\t e ke
a At
fs, (t AZ k:ne (k—1)!
00 k o] k
_ (M) (A
S AZ z
— )\efx\t ()\t)nil
(n—1)!

d (weight 10p)

Let {N (t)};~( be the process counting the number of arrivals at the surgery.
{N (t)},50 is a Poisson process with rate 6 per hour. Let {S,},~, be the
the n-th arrival time, which is distributed as a I"(n, \), i.e., the density of
Sy, is given by

n—1
fs, (t) = Xe _)‘t((:l\tzl)', t>0.

(Continued on page 6.)
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1. The expected time is given by E[S3] = 2 =

N[

2. The required probability is given by

2 %
P(N(1)<2) =) e (6 >;1)
i=0 :

6 36
—6

= 1 —

e {+1+2}

= ¢7925 ~ 0.0620

Problem 3

A suggested solution is:

a (weight 10p)

A stochastic process {B (t)}; is said to be a Brownian motion if
1. B(0)=0.
2. {B(t)};>( has stationary and independent increments.

3. For every t > 0, B (¢) has normal distribution with mean zero and
variance {.

b (weight 10p)

Let s < t, we have that

E[B(t)B(s)] =E[B(t) B(s) + B(s) B(s) — B(s) B(s)]
=E[(B(t) - B(s)) B(s)] + E[B(s) B (s)]
=E[(B()—B(s)]E[B(s)] +s

where in the third equality we have used that B has independent increments
and E[B (s) B(s)] = Var[B(s)] = s. Moreover, in the fourth equality we
have used that E[B (s)] = 0. We can do the same argument for ¢ < s and
conclude that

E[B (t) B (s)] = min (s,t).

c (weight 10p)

One has that X (0) = B(a) — B(a) = 0. Let t; < tg < --- < t,, by using
that {B (t)},>, has stationary and independent increments, we can write

y X (t2) = X (t1) o0y X (t) — X (tn—1))

a+t1)—B(a),B(a+ty) —B(a+t1),..,Bla+t,) — B(a+ty-1))
a+ti—a),Bla+teo—a—t1),...B(a+t, —a—ty,_1))

t1),B(t2 —t1), ..., B(tn — tn-1))

t1),B(t2) — B(t1),..., B(tp,) — B (tn—-1)),

(Continued on page 7.)
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where ~ means equality in law. Hence we have shown that the increments
of {X(t)=DB(t+a)— B(a)},~, have the same joint law as of those of
a standard Brownian motion and therefore they are independent and
stationary. In particular, we have shown that the law of X (¢) is the same as
the law of B (t) ~ N (0,¢) and we can conclude.

SLUTT



