UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:
STK2130 - Modelling by stochastic processes
Day of examination: Monday 11. june 2018
Examination hours: 14.30-18.30
This problem set consists of 7 pages.

Appendices:
Permitted aids:

None
Formulae note for STK1100 and STK1110. Accepted calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a (weight 10 p)
Note that $r+0.3+0.2=1$, which implies that $r=0.5$. On the other hand, $p, q \in[0,1]$ must satisfy $p+q=1$ and, hence, we can write $p=1-q$ and leave $q \in[0,1]$ as the only free parameter. Qualitatively, there are two main cases, $q=0$ and $q \in(0,1]$.

1. Case $q=0$.

2. Case $q \in(0,1]$.

b (weight 10p)
We have:
3. Case $q=0$. From the diagram is clear that the communicating classes are $\{1\},\{2\},\{3,4\}$. In addition $\{3,4\}$ is closed and 1 is an absorbing state.
4. Case $q \in(0,1]$. From the diagram is clear that the communicating classes are $\{1,2\},\{3,4\}$. In addition $\{3,4\}$ is closed and there are no absorbing states.

c

For any state i we let f_{i} denote the probability that, starting in state i, the process will ever reenter state i. State i is said to be recurrent if $f_{i}=1$ and transient if $f_{i}<1$. Recurrence/transience is a communicating class property. Finite and closed communicating classes are recurrent. If a communicating class is not closed it must be transient.

1. Case $q=0 .\{1\}$ and $\{3,4\}$ are recurrent. $\{2\}$ is transient.
2. Case $q \in(0,1] .\{1,2\}$ is transient and $\{3,4\}$ is recurrent.
d (weight 10p)
We have that for all $i, j=1, \ldots, 4$

$$
P\left(X_{2}=j \mid X_{0}=i\right)=P_{i, j}^{2}
$$

The two-step transition probability matrix is given by

$$
P^{2}=P P=\left(\begin{array}{cccc}
p^{2}+0.3 q & 0.2 q+p q & 0.5 q & 0 \\
0.06+0.3 p & 0.04+0.3 q & 0.3 & 0.3 \\
0 & 0 & 0.46 & 0.54 \\
0 & 0 & 0.45 & 0.55
\end{array}\right)
$$

e (weight 10p)

When $X_{0}=3$ or $X_{0}=4$ the process starts in a recurrent and finite class. Hence, we can regard the states $\{3,4\}$ as an irreducible finite state Markov chain with transition probability matrix

$$
Q=\left(\begin{array}{cc}
0.4 & 0.6 \\
0.5 & 0.5
\end{array}\right)
$$

As any irreducible finite state Markov chain is positive recurrent, the invariant distribution exists and is given by the solution of the following system of linear equations

$$
\begin{aligned}
& \pi_{3}=0.4 \pi_{3}+0.5 \pi_{4} \\
& \pi_{3}+\pi_{4}=1
\end{aligned}
$$

which is

$$
\pi_{3}=\frac{5}{11}, \quad \pi_{4}=\frac{6}{11}
$$

f (weight 10p)

We have that the vector k^{A} of mean hitting times of a subset of states A is given by the minimal non-negative solution to the system

$$
\begin{aligned}
k_{i}^{A} & =0, \quad i \in A \\
k_{i}^{A} & =1+\sum_{j \notin A} P_{i, j} k_{j}^{A} \quad i \notin A
\end{aligned}
$$

The answer for this question is k_{2}^{A}.

1. Case $q=0$. Let $A=\{1\} \cup\{3,4\}$, then

$$
k_{2}^{A}=1+P_{2,2} k_{2}^{A}=1+0.2 k_{2}^{A}
$$

which yields $k_{2}^{A}=10 / 8$.
2. Case $q \in(0,1]$. Let $A=\{3,4\}$, then

$$
\begin{aligned}
& k_{1}^{A}=1+P_{1,1} k_{1}^{A}+P_{1,2} k_{2}^{A}=1+(1-q) k_{1}^{A}+q k_{2}^{A} \\
& k_{2}^{A}=1+P_{2,1} k_{1}^{A}+P_{2,1} k_{1}^{A}=1+0.3 k_{1}^{A}+0.2 k_{2}^{A}
\end{aligned}
$$

which yields

$$
\begin{aligned}
& k_{1}^{A}=\frac{2(q+0.8)}{q} \\
& k_{2}^{A}=\frac{2(q+0.3)}{q}
\end{aligned}
$$

g (weight 10p)

We have that the vector h^{A} of hitting probabilities of a subset of states A is given by the minimal non-negative solution to the system

$$
\begin{aligned}
& h_{i}^{A}=1, \quad i \in A \\
& h_{i}^{A}=\sum_{j} P_{i, j} h_{j}^{A} \quad i \notin A
\end{aligned}
$$

The answer for this question is h_{2}^{A} with $A=\{3,4\}$.

1. Case $q=0$. Let $A=\{3,4\}$, then

$$
\begin{aligned}
h_{3}^{A} & =h_{4}^{A}=1 \\
h_{1}^{A} & =P_{1,1} h_{1}^{A}+P_{1,2} h_{2}^{A}+P_{1,3} h_{3}^{A}+P_{1,4} h_{4}^{A}=h_{1}^{A} \\
h_{2}^{A} & =P_{2,1} h_{1}^{A}+P_{2,2} h_{2}^{A}+P_{2,3} h_{3}^{A}+P_{2,4} h_{4}^{A} \\
& =0.3 h_{1}^{A}+0.2 h_{2}^{A}+0.5 .
\end{aligned}
$$

The first equation $h_{1}^{A}=h_{1}^{A}$ gives us no information. However, as the state 1 is absorbing we have that $h_{1}^{A}=0$. Substituting this value in the last equation gives $h_{2}^{A}=5 / 8$.
2. Case $q \in(0,1]$. Let $A=\{3,4\}$, then

$$
\begin{aligned}
h_{3}^{A} & =h_{4}^{A}=1, \\
h_{1}^{A} & =P_{1,1} h_{1}^{A}+P_{1,2} h_{2}^{A}+P_{1,3} h_{3}^{A}+P_{1,4} h_{4}^{A} \\
& =(1-q) h_{1}^{A}+q h_{2}^{A} \\
h_{2}^{A} & =P_{2,1} h_{1}^{A}+P_{2,2} h_{2}^{A}+P_{2,3} h_{3}^{A}+P_{2,4} h_{4}^{A} \\
& =0.3 h_{1}^{A}+0.2 h_{2}^{A}+0.5,
\end{aligned}
$$

which yields $h_{1}^{A}=h_{2}^{A}=1$. Note that we do not need to solve the previous equation. Actually, as $\{1,2\}$ is transient and $\{3,4\}$ is recurrent we must have $h_{1}^{A}=h_{2}^{A}=1$.

Problem 2

A suggested solution is:

a (weight 10p)

A counting process $\{N(t)\}_{t \geq 0}$ is said to be a Poisson process with rate $\lambda>0$ if the following axioms hold:

1. $N(0)=0$.
2. $\{N(t)\}_{t \geq 0}$ has independent increments.
3. $P(N(t+h)-N(t)=1)=\lambda h+o(h)$.
4. $P(N(t+h)-N(t) \geq 2)=o(h)$.

b (weight 10p)

We start computing $g(t+h)$.

$$
\begin{aligned}
g(t+h) & =\mathbb{E}\left[e^{-u N(t+h)}\right] \\
& =\mathbb{E}\left[e^{-u\{N(t+h)-N(t)+N(t)\}}\right] \\
& =g(t) \mathbb{E}\left[e^{-u\{N(t+h)-N(t)\}}\right]
\end{aligned}
$$

where in the last equality we have used axiom ii. . Next we compute an $o(h)$ approximation for $\mathbb{E}\left[e^{-u\{N(t+h)-N(t)\}}\right]$. To simplify the notation let $Z=N(t+h)-N(t)$. First note that by axioms iii. and iv.

$$
\begin{aligned}
P(Z=0) & =1-\{P(Z=1)=2+P(Z \geq 2)\} \\
& =1-\{\lambda h+o(h)+o(h)\} \\
& =1-\lambda h+o(h)
\end{aligned}
$$

Therefore, conditioning on the events $\{Z=0\},\{Z=1\}$ and $\{Z \geq 2\}$ we obtain

$$
\begin{aligned}
\mathbb{E}\left[e^{-u Z}\right] & =\mathbb{E}\left[e^{-u Z} \mid Z=0\right] P(Z=0)+\mathbb{E}\left[e^{-u Z} \mid Z=1\right] P(Z=1) \\
& +\mathbb{E}\left[e^{-u Z} \mid Z \geq 2\right] P(Z \geq 2) \\
& =1 \times(1-\lambda h+o(h))+e^{-u} \times(\lambda h+o(h))+\mathbb{E}\left[e^{-u Z} \mid Z \geq 2\right] \times o(h) \\
& =1+\lambda\left(e^{-u}-1\right) h+o(h)
\end{aligned}
$$

(Continued on page 5.)

Hence,

$$
g(t+h)=g(t)\left\{1+\lambda\left(e^{-u}-1\right) h+o(h)\right\}
$$

which can be written as

$$
\frac{g(t+h)-g(t)}{h}=g(t) \lambda\left(e^{-u}-1\right)+\frac{o(h)}{h}
$$

and letting $h \rightarrow 0$ we can conclude that $g(t)$ satisfies the desired differential equation. This differential equation is linear and has the solution g

$$
\begin{aligned}
g(t) & =g(0) e^{\lambda\left(e^{-u}-1\right) t} \\
& =e^{\lambda\left(e^{-u}-1\right) t}
\end{aligned}
$$

On the other hand, the Laplace transform of a Poisson random variable characterizes its distribution. Hence, we only need to check that the Laplace transform of $W \sim$ Poiss (λ) coincides with $g(t)$. We have

$$
\begin{aligned}
\mathbb{E}\left[e^{-u W}\right] & =\sum_{k=0}^{\infty} e^{-u k} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} \\
& =e^{-\lambda t} \sum_{k=0}^{\infty} \frac{\left(e^{-u} \lambda t\right)^{k}}{k!} \\
& =e^{-\lambda t} e^{e^{-u} \lambda t} \\
& =e^{\lambda\left(e^{-u}-1\right) t}=g(t)
\end{aligned}
$$

c (weight 10p)

As $\{N(t) \geq n\}$ if and only if $\left\{S_{n} \leq t\right\}$ one has that the distribution function of S_{n} is given by

$$
\begin{aligned}
F_{S_{n}}(t) & =P\left(S_{n} \leq t\right)=P(N(t) \geq n)=\sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} \\
& =
\end{aligned}
$$

Taking derivatives we get its density

$$
\begin{aligned}
f_{S_{n}}(t) & =-\lambda \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}+\lambda \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k-1}}{(k-1)!} \\
& =-\lambda \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}+\lambda \sum_{k=n-1}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} \\
& =\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
\end{aligned}
$$

d (weight 10p)

Let $\{N(t)\}_{t \geq 0}$ be the process counting the number of arrivals at the surgery. $\{N(t)\}_{t \geq 0}$ is a Poisson process with rate 6 per hour. Let $\left\{S_{n}\right\}_{n \geq 0}$ be the the n-th arrival time, which is distributed as a $\Gamma(n, \lambda)$, i.e., the density of S_{n} is given by

$$
f_{S_{n}}(t)=\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, \quad t>0
$$

(Continued on page 6.)

1. The expected time is given by $\mathbb{E}\left[S_{3}\right]=\frac{3}{\lambda}=\frac{1}{2}$.
2. The required probability is given by

$$
\begin{aligned}
P(N(1) \leq 2) & =\sum_{i=0}^{2} e^{-6 \times 1} \frac{(6 \times 1)^{i}}{i!} \\
& =e^{-6}\left\{1+\frac{6}{1}+\frac{36}{2}\right\} \\
& =e^{-6} 25 \approx 0.0620
\end{aligned}
$$

Problem 3

A suggested solution is:

a (weight 10p)

A stochastic process $\{B(t)\}_{t \geq 0}$ is said to be a Brownian motion if

1. $B(0)=0$.
2. $\{B(t)\}_{t \geq 0}$ has stationary and independent increments.
3. For every $t>0, B(t)$ has normal distribution with mean zero and variance t.

b (weight 10p)

Let $s<t$, we have that

$$
\begin{aligned}
\mathbb{E}[B(t) B(s)] & =\mathbb{E}[B(t) B(s)+B(s) B(s)-B(s) B(s)] \\
& =\mathbb{E}[(B(t)-B(s)) B(s)]+\mathbb{E}[B(s) B(s)] \\
& =\mathbb{E}[(B(t)-B(s))] \mathbb{E}[B(s)]+s \\
& =s
\end{aligned}
$$

where in the third equality we have used that B has independent increments and $\mathbb{E}[B(s) B(s)]=\operatorname{Var}[B(s)]=s$. Moreover, in the fourth equality we have used that $\mathbb{E}[B(s)]=0$. We can do the same argument for $t<s$ and conclude that

$$
\mathbb{E}[B(t) B(s)]=\min (s, t)
$$

c (weight 10p)

One has that $X(0)=B(a)-B(a)=0$. Let $t_{1}<t_{2}<\cdots<t_{n}$, by using that $\{B(t)\}_{t \geq 0}$ has stationary and independent increments, we can write

$$
\begin{aligned}
& \left(X\left(t_{1}\right), X\left(t_{2}\right)-X\left(t_{1}\right), \ldots, X\left(t_{n}\right)-X\left(t_{n-1}\right)\right) \\
& =\left(B\left(a+t_{1}\right)-B(a), B\left(a+t_{2}\right)-B\left(a+t_{1}\right), \ldots, B\left(a+t_{n}\right)-B\left(a+t_{n-1}\right)\right) \\
& \sim\left(B\left(a+t_{1}-a\right), B\left(a+t_{2}-a-t_{1}\right), \ldots, B\left(a+t_{n}-a-t_{n-1}\right)\right) \\
& =\left(B\left(t_{1}\right), B\left(t_{2}-t_{1}\right), \ldots, B\left(t_{n}-t_{n-1}\right)\right) \\
& \sim\left(B\left(t_{1}\right), B\left(t_{2}\right)-B\left(t_{1}\right), \ldots, B\left(t_{n}\right)-B\left(t_{n-1}\right)\right),
\end{aligned}
$$

where \sim means equality in law. Hence we have shown that the increments of $\{X(t)=B(t+a)-B(a)\}_{t \geq 0}$ have the same joint law as of those of a standard Brownian motion and therefore they are independent and stationary. In particular, we have shown that the law of $X(t)$ is the same as the law of $B(t) \sim N(0, t)$ and we can conclude.

SLUTT

