UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK2130 - Modelling by stochastic processes
Day of examination:	Monday 11. june 2018
Examination hours:	14.30 - 18.30
This problem set consists of 7 pages.	
Appendices:	None
Permitted aids:	Formulae note for STK1100 and STK1110. Accepted calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a (weight 10p)

Note that r + 0.3 + 0.2 = 1, which implies that r = 0.5. On the other hand, $p, q \in [0, 1]$ must satisfy p + q = 1 and, hence, we can write p = 1 - q and leave $q \in [0, 1]$ as the only free parameter. Qualitatively, there are two main cases, q = 0 and $q \in (0, 1]$.

1. Case q = 0.

2. Case $q \in (0, 1]$.

 \mathbf{b} (weight 10p)

We have:

1. Case q = 0. From the diagram is clear that the communicating classes are $\{1\}, \{2\}, \{3, 4\}$. In addition $\{3, 4\}$ is closed and 1 is an absorbing state.

(Continued on page 2.)

2. Case $q \in (0, 1]$. From the diagram is clear that the communicating classes are $\{1, 2\}, \{3, 4\}$. In addition $\{3, 4\}$ is closed and there are no absorbing states.

С

For any state i we let f_i denote the probability that, starting in state i, the process will ever reenter state i. State i is said to be recurrent if $f_i = 1$ and transient if $f_i < 1$. Recurrence/transience is a communicating class property. Finite and closed communicating classes are recurrent. If a communicating class is not closed it must be transient.

- 1. Case q = 0. {1} and {3,4} are recurrent. {2} is transient.
- 2. Case $q \in (0, 1]$. $\{1, 2\}$ is transient and $\{3, 4\}$ is recurrent.
- \mathbf{d} (weight 10p)

We have that for all i, j = 1, ..., 4

$$P(X_2 = j | X_0 = i) = P_{i,j}^2.$$

The two-step transition probability matrix is given by

$$P^{2} = PP = \begin{pmatrix} p^{2} + 0.3q & 0.2q + pq & 0.5q & 0\\ 0.06 + 0.3p & 0.04 + 0.3q & 0.3 & 0.3\\ 0 & 0 & 0.46 & 0.54\\ 0 & 0 & 0.45 & 0.55 \end{pmatrix}$$

e (weight 10p)

When $X_0 = 3$ or $X_0 = 4$ the process starts in a recurrent and finite class. Hence, we can regard the states $\{3, 4\}$ as an irreducible finite state Markov chain with transition probability matrix

$$Q = \left(\begin{array}{cc} 0.4 & 0.6\\ 0.5 & 0.5 \end{array}\right).$$

As any irreducible finite state Markov chain is positive recurrent, the invariant distribution exists and is given by the solution of the following system of linear equations

$$\pi_3 = 0.4\pi_3 + 0.5\pi_4, \\ \pi_3 + \pi_4 = 1,$$

which is

$$\pi_3 = \frac{5}{11}, \qquad \pi_4 = \frac{6}{11}.$$

\mathbf{f} (weight 10p)

We have that the vector k^A of mean hitting times of a subset of states A is given by the minimal non-negative solution to the system

$$\begin{split} k_i^A &= 0, \qquad i \in A, \\ k_i^A &= 1 + \sum_{j \notin A} P_{i,j} k_j^A \qquad i \notin A \end{split}$$

The answer for this question is k_2^A .

1. Case q = 0. Let $A = \{1\} \cup \{3, 4\}$, then

$$k_2^A = 1 + P_{2,2}k_2^A = 1 + 0.2k_2^A,$$

which yields $k_2^A = 10/8$.

2. Case $q \in (0, 1]$. Let $A = \{3, 4\}$, then

$$\begin{aligned} k_1^A &= 1 + P_{1,1}k_1^A + P_{1,2}k_2^A = 1 + (1-q)k_1^A + qk_2^A \\ k_2^A &= 1 + P_{2,1}k_1^A + P_{2,1}k_1^A = 1 + 0.3k_1^A + 0.2k_2^A, \end{aligned}$$

which yields

$$k_1^A = \frac{2(q+0.8)}{q}$$
$$k_2^A = \frac{2(q+0.3)}{q}.$$

\mathbf{g} (weight 10p)

We have that the vector h^A of hitting probabilities of a subset of states A is given by the minimal non-negative solution to the system

$$h_i^A = 1, \qquad i \in A,$$

$$h_i^A = \sum_j P_{i,j} h_j^A \qquad i \notin A,$$

The answer for this question is h_2^A with $A = \{3, 4\}$.

1. Case q = 0. Let $A = \{3, 4\}$, then

$$\begin{split} h_3^A &= h_4^A = 1, \\ h_1^A &= P_{1,1}h_1^A + P_{1,2}h_2^A + P_{1,3}h_3^A + P_{1,4}h_4^A = h_1^A \\ h_2^A &= P_{2,1}h_1^A + P_{2,2}h_2^A + P_{2,3}h_3^A + P_{2,4}h_4^A \\ &= 0.3h_1^A + 0.2h_2^A + 0.5. \end{split}$$

The first equation $h_1^A = h_1^A$ gives us no information. However, as the state 1 is absorbing we have that $h_1^A = 0$. Substituting this value in the last equation gives $h_2^A = 5/8$.

(Continued on page 4.)

2. Case $q \in (0, 1]$. Let $A = \{3, 4\}$, then

$$\begin{split} h_3^A &= h_4^A = 1, \\ h_1^A &= P_{1,1}h_1^A + P_{1,2}h_2^A + P_{1,3}h_3^A + P_{1,4}h_4^A \\ &= (1-q)\,h_1^A + qh_2^A \\ h_2^A &= P_{2,1}h_1^A + P_{2,2}h_2^A + P_{2,3}h_3^A + P_{2,4}h_4^A \\ &= 0.3h_1^A + 0.2h_2^A + 0.5, \end{split}$$

which yields $h_1^A = h_2^A = 1$. Note that we do not need to solve the previous equation. Actually, as $\{1,2\}$ is transient and $\{3,4\}$ is recurrent we must have $h_1^A = h_2^A = 1$.

Problem 2

A suggested solution is:

a (weight 10p)

A counting process $\{N(t)\}_{t\geq 0}$ is said to be a Poisson process with rate $\lambda > 0$ if the following axioms hold:

- 1. N(0) = 0.
- 2. $\{N(t)\}_{t\geq 0}$ has independent increments.
- 3. $P(N(t+h) N(t) = 1) = \lambda h + o(h)$.
- 4. $P(N(t+h) N(t) \ge 2) = o(h)$.

 \mathbf{b} (weight 10p)

We start computing g(t+h).

$$g(t+h) = \mathbb{E}\left[e^{-uN(t+h)}\right]$$
$$= \mathbb{E}\left[e^{-u\{N(t+h)-N(t)+N(t)\}}\right]$$
$$= g(t) \mathbb{E}\left[e^{-u\{N(t+h)-N(t)\}}\right],$$

where in the last equality we have used axiom ii. . Next we compute an o(h) approximation for $\mathbb{E}\left[e^{-u\{N(t+h)-N(t)\}}\right]$. To simplify the notation let Z = N(t+h) - N(t). First note that by axioms iii. and iv.

$$P(Z = 0) = 1 - \{P(Z = 1) = 2 + P(Z \ge 2)\}$$

= 1 - {\lambda h + o(h) + o(h)}
= 1 - \lambda h + o(h).

Therefore, conditioning on the events $\{Z=0\}, \{Z=1\}$ and $\{Z\geq 2\}$ we obtain

$$\mathbb{E}\left[e^{-uZ}\right] = \mathbb{E}\left[e^{-uZ}|Z=0\right] P\left(Z=0\right) + \mathbb{E}\left[e^{-uZ}|Z=1\right] P\left(Z=1\right) \\ + \mathbb{E}\left[e^{-uZ}|Z\geq2\right] P\left(Z\geq2\right) \\ = 1 \times (1 - \lambda h + o\left(h\right)) + e^{-u} \times (\lambda h + o\left(h\right)) + \mathbb{E}\left[e^{-uZ}|Z\geq2\right] \times o\left(h\right) \\ = 1 + \lambda \left(e^{-u} - 1\right) h + o\left(h\right).$$

(Continued on page 5.)

Hence,

$$g(t+h) = g(t) \{1 + \lambda (e^{-u} - 1) h + o(h)\},\$$

which can be written as

$$\frac{g\left(t+h\right)-g\left(t\right)}{h}=g\left(t\right)\lambda\left(e^{-u}-1\right)+\frac{o\left(h\right)}{h},$$

and letting $h \to 0$ we can conclude that g(t) satisfies the desired differential equation. This differential equation is linear and has the solution g

$$g(t) = g(0) e^{\lambda \left(e^{-u} - 1\right)t}$$
$$= e^{\lambda \left(e^{-u} - 1\right)t}.$$

On the other hand, the Laplace transform of a Poisson random variable characterizes its distribution. Hence, we only need to check that the Laplace transform of $W \sim \text{Poiss}(\lambda)$ coincides with g(t). We have

$$\mathbb{E}\left[e^{-uW}\right] = \sum_{k=0}^{\infty} e^{-uk} e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
$$= e^{-\lambda t} \sum_{k=0}^{\infty} \frac{(e^{-u}\lambda t)^k}{k!}$$
$$= e^{-\lambda t} e^{e^{-u}\lambda t}$$
$$= e^{\lambda (e^{-u}-1)t} = g(t).$$

 \mathbf{c} (weight 10p)

As $\{N(t) \ge n\}$ if and only if $\{S_n \le t\}$ one has that the distribution function of S_n is given by

$$F_{S_n}(t) = P(S_n \le t) = P(N(t) \ge n) = \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!}.$$

Taking derivatives we get its density

$$f_{S_n}(t) = -\lambda \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} + \lambda \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k-1}}{(k-1)!}$$
$$= -\lambda \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!} + \lambda \sum_{k=n-1}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
$$= \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}.$$

\mathbf{d} (weight 10p)

Let $\{N(t)\}_{t\geq 0}$ be the process counting the number of arrivals at the surgery. $\{N(t)\}_{t\geq 0}$ is a Poisson process with rate 6 per hour. Let $\{S_n\}_{n\geq 0}$ be the the *n*-th arrival time, which is distributed as a $\Gamma(n, \lambda)$, i.e., the density of S_n is given by

$$f_{S_n}(t) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}, \qquad t > 0.$$

(Continued on page 6.)

- 1. The expected time is given by $\mathbb{E}[S_3] = \frac{3}{\lambda} = \frac{1}{2}$.
- 2. The required probability is given by

$$P(N(1) \le 2) = \sum_{i=0}^{2} e^{-6 \times 1} \frac{(6 \times 1)^{i}}{i!}$$
$$= e^{-6} \left\{ 1 + \frac{6}{1} + \frac{36}{2} \right\}$$
$$= e^{-6} 25 \approx 0.0620$$

Problem 3

A suggested solution is:

a (weight 10p)

A stochastic process $\{B(t)\}_{t\geq 0}$ is said to be a Brownian motion if

- 1. B(0) = 0.
- 2. $\{B(t)\}_{t>0}$ has stationary and independent increments.
- 3. For every t > 0, B(t) has normal distribution with mean zero and variance t.

\mathbf{b} (weight 10p)

Let s < t, we have that

$$\mathbb{E}[B(t) B(s)] = \mathbb{E}[B(t) B(s) + B(s) B(s) - B(s) B(s)] = \mathbb{E}[(B(t) - B(s)) B(s)] + \mathbb{E}[B(s) B(s)] = \mathbb{E}[(B(t) - B(s))] \mathbb{E}[B(s)] + s = s,$$

where in the third equality we have used that B has independent increments and $\mathbb{E}[B(s) B(s)] = \text{Var}[B(s)] = s$. Moreover, in the fourth equality we have used that $\mathbb{E}[B(s)] = 0$. We can do the same argument for t < s and conclude that

$$\mathbb{E}\left[B\left(t\right)B\left(s\right)\right] = \min\left(s,t\right).$$

 \mathbf{c} (weight 10p)

One has that X(0) = B(a) - B(a) = 0. Let $t_1 < t_2 < \cdots < t_n$, by using that $\{B(t)\}_{t\geq 0}$ has stationary and independent increments, we can write

$$\begin{aligned} &(X(t_1), X(t_2) - X(t_1), ..., X(t_n) - X(t_{n-1})) \\ &= (B(a+t_1) - B(a), B(a+t_2) - B(a+t_1), ..., B(a+t_n) - B(a+t_{n-1})) \\ &\sim (B(a+t_1-a), B(a+t_2-a-t_1), ..., B(a+t_n-a-t_{n-1})) \\ &= (B(t_1), B(t_2-t_1), ..., B(t_n-t_{n-1})) \\ &\sim (B(t_1), B(t_2) - B(t_1), ..., B(t_n) - B(t_{n-1})), \end{aligned}$$

(Continued on page 7.)

where \sim means equality in law. Hence we have shown that the increments of $\{X(t) = B(t+a) - B(a)\}_{t\geq 0}$ have the same joint law as of those of a standard Brownian motion and therefore they are independent and stationary. In particular, we have shown that the law of X(t) is the same as the law of $B(t) \sim N(0, t)$ and we can conclude.

SLUTT