Solution proposal STK2130-sp19

Problem 1

a)

A class is defined as a set of states which communicate.

One class is {2,4} since the paths 2,4,2, and 4, 2,4 are possible so 2 and 4
communicate

The second class is {1,5} since the paths 1,5,1, and 5,1,5 are possible so 1
and 5 communicate. The state {3} is absorbing and therefore is a class of its
own.

If the chain enters {1, 5}, it stays there so there is an infinite number of visits
to this class and the class is recurrent. If the initial state is 2 the path 2,4, 5 is
possible and the chain does not return to 2. Hence the class {2,4} is transient.
The state {3} is absorbing, and hence is recurrent since the chain stays in 1
always, i.e. an infinite number of times.

From the Chapman-Kolmogorov equations

1/2
5 0
P =Y PyPis = (0,1/4,1/4,1/4,1/4) (/) —1/16 4+ 2/16 = 3/16.
k=1 1/4
1/2

The transition matrix for the chain moving outside {1, 3,5} and being absorbed
in {1, 3,5} is when the states are {2,4, A}

0 1/2 1/2
Q=1 1/4 1/4 1/2
0o 0 1
Then P(X3 =2, X, ¢ {1,3,5},k = 1,2|X, = 4) = Q3, But
0 1/2 1/2 0 1/2 1/2 0 1/2 1/2
Q = 1/4 1/4 1/2 1/4 1/4 1/2 1/4 1/4 1/2
0o 0 1 0 0 1 0 0 1
0 1/2 1/2 1/8 1/8 3/4
= 1/4 1/4 1/2 1/16 3/16 6/8
0 0 1 0 0 1
5 1/8
Qe =Y QuQiy = (1/4,1/4,1/2) | 1/16 | = (1/4)(1/8)+(1/4)(1/16) = 3/64.
k=1 0

Remark that there are only two possible paths: 4,4,4,2 and 4,2,4,2 with prob-
abilities (1/4)(1/4)(1/4)=1/64 and (1/4)(1/2)(1/4)=1/32.
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P(X5=1,X, ¢ {1,3,5},k = 1,2|X, = 4).
P(Xs=1,Xs=2,X, ¢ {1,3,5}| X, = 4)
P(X;=1,Xs=4,X, ¢ {1,3,5}| X0 =14)

= PX3=1|X2=2,X,¢{1,3,5}, X0 =4)P(X2 =2,X; ¢ {1,3,5},|Xo =4)

b OP(Xy=11Xo =4, X1 ¢ {1,3,5), Xo = ) P(Xa = 4, X, ¢ {1,3,5}| X, = 4)

= = Q1P + Q1 Pn

where P(X3 = 1|1Xy = 2, X, ¢ {1,3,5},Xg =4) = Py = 1/2 and P(X; =
11X, =2,X; ¢ {1,3,5}, Xg = 4) = P;; = 0 follow by the Markov property.
Thus Q%P1 + Q% Py = (1/16)(1/2) = 1/32 since Q3, = 1/16

Here there is only one possible path: 4,4,2,1 with probability (1/4)(1/4)(1/2)=1/32.

+

If Xo € {1,3,5}, T =0s0 u; = E[T|Xo =i =0,k € {1,3,5}. Also
5
pr = Y E[T,X; =i|X, =2
=1

5
= Y E[T|X) =i, Xo=2|P(X; = i| Xy = 2)

=1
5
= Y 1+ E[T|X, = i|P(X; = i| X, = 2)

i=1

since by the Markov property E[T|X; = i, X1 = j| = 1 + E[T|X}1 =
i, Xp2 =7l =1+ E[T| X1 =1]. Thus py = 1+ py Poo + praPos = 1+ pa/2.
Similarly py = 1+ poPys + pa Py = 1+ po/4 + pyg/4. The equations

po = 1+ /2
fa = 1+ po/d+ pa/4

have solutions py = 2 and py = 2.

The class {1,5} is a closed class so once the chain enters the class it stays
there. Hence 75 is the limit of the proportion of time the chain is in state 5.
Similarly m = lim, . P(X,, = 1|Xo = 1) is the limit of the proportion of
time the chain is in state 1. (7, 75) is the solution of the equations

(m1,75) = (m1,75) ( 1?; 1?3 )

and pi; + m5) = 1 so (m,7m5) = (1/2,1/2).



Problem 2

a)

A birth and death process is a continuous time Markov chain with state space

0,1,2,.... When the chain is in state i the times until the next change of
state are independent exponentially distributed with mean 1/v; where vy = Ao
and v; = A\, + p; .1 = 1,2,.... The move to the next state is described by a

binary random variable which is independent of how long the chain is in state
¢ and has a distribution where the probability that the change is to ¢ + 1 is
Ai/ (i + i) he probability that the change is to i —11s pu; /(N4 p3) i = 1,2, ...
and the probability that the move is to 1 if ¢ =0 is 1.

The state is the number of customers so the state space is 0,1,...,s. The
chain moves from i to i+1 7 = 0,1,...,s — 1 when a new customer arrives
soN\; =Ai=20,...,s — 1. If no server is free so the state is i = s the new
customer leaves so Ay = 0. If i servers are busy the chain moves from i to
t—1, i=1,...,s when the first server is free. This variable is the minimum
of 7 independent exponentially distributed variable, which is an exponentially
distributed variable with expectation 1/ipu

Hence vg = A\, v; = A +iu, © = 1,...,8s — 1 and vy, = su. The transition
matrix of the jumps has elements 0 except Py; and P11 = A/(A + ip),
Pi1=p/(AN+iu),i=1,...,s—1land P54 = 1.

The instantaneous transition rates are therefore gy = A, giiy1 = A, @ =
1,....,s=1¢q;,1=1in, t=1,...,s—1and g5 s_1 = sp.

The Kolmogorov backward equations have the form
Pz,j (t) = Z Qir Prj(t) — vi Py (1).
ki
With the results from part b)
Fo;(t) = APy(t) — APy, (1)
PL(t) = APyp(t) +ipPiy(t) — A +ip)Py(t), i=1,...,5s -1
P(t) = spPayj(t) — spPy(t).

The balance equations are

v; Py = ZijPk
k#j

where P; are the limiting probabilities. In this case

U()P() = Q10P1 1.e. )\P() = [LPl

VP = ¢, P+ GiP le. A +ip)P=AP 4+ (i+ D)pPiy, t=1,...,s—1

v P, = Gs—1,sPs—1 ie. suP; = APy 1.
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)

First P, = ﬁPO. Inserting in the next equation (A 4+ p)Py = APy + 2upPs,
ie. A+p)Pr=pPr+2uPyor Py = 5P It B= Py, A +ip)P =
(i+1)uPz+1+)\Pi,1 = (i+)puPy1+ipP;, so Py = P fori=1,...,s—1.

(+1)
Also P; = PS 1.
Hence, P, =[]\ 2--- & = (2)'LP) and P, = '
=0 pu in p’ i1+ 0 i 25:0(%)j%-
Problem 3

a)

It is impossible for the chain to return to 0 after an odd nunber of steps since
it moves one step up with probability p or one step down with probability 1-p.

If the chain returns to 0 after 2n steps, there must have been n steps up and n
steps down. There are (2:) possible locations of the n steps upward and each
of them occur with probability p. Hence Pir = (2") p*(1 —p)"

n

From Stirling’s approximation
| (2n>2n (27T2n) 22n+1ﬁn2n+1/2
(Qn) - e2n - e2n
n?"2mn  2mnntl
(n)* = = 5
e-" e-"

Hence E T'l))Q' - 2:% \4ﬁ and Pj, = (2")p (1 —p)™ is approximately [ —p)]" \/ﬁ)} )

Therefore > >° | Pl = oo if and only if p = 1/2 and the chain is recurrent if
p = 1/2 and transient if p # 1/2.

By decomposing the event T} < oo according to whether X; =1 or X; = —1
f=PT <0Xy=0)=P(T1 <o0,X; =1Xg=0)+P(T1 <o00,X; =

P(Ty < 00, X1 = 1| Xy = 0)
= P(T, < 00, X1 =1,Xo = 0)/P(Xy = 0)
= P(T) < 00| X; = 1Xo = 0)P(X; = 1, Xy = 0)/P(X, = 0)
= P(T, < ool X; = 1)P(X; = 1|X, = 0)

where we have used the Markov property. But P(7} < oo|X; = 1) = 1 and
P(Xl = ]_|X0 :O> = p, SO P(Tl < OO,Xl = 1|X0 :0) =Pp

Next consider P(7T; < o0, X7 = —1|Xy = 0) which by the same calculations
equals P(T7 < oo|X; = —1)P(X; = —1|Xo = 0). But to reach 1 starting in
—1 the chain must first reach 0, i.e one unit about the starting value which
has probability P(Ty < oo,|Xy = —1) and is equal to P(T} < oo|Xy =
0). Then having reach 0 the chain must reach 1, which also has probability
f = P(Ty < oo|Xp = 0). Thus P(Ty; < oco|X; = —1) = f? since by the
Markov property the two events must be independent. Knowing that X, =0

4



how the chain has reach this state is independent of the future behavior, so
P(Tl < OO|X1 = —1)P<X1 = —1|X0 = 0) = f2q and

f=p+af

The fact that p < ¢ means that the chain has a drift downward. The proba-
bility P(7T) < oo|Xo = 0) is the same as the probability for absorption if the
state 1 has been defined as an absorbing state. That this event should have
probability 1 when there is a downward drift is not reasonable. Hence f = p/q
is the natural choice.

d) Decomposing By decomposing the event Ty < oo according to whether X; = 1

or X; = —1 and arguing as in part ¢) P(Ty < 00| Xy =0) = P(Tp < 00| Xy =
DP(X, = 11Xy =0) + P(Ty < o0|X; = —1)P(X; = —1|Xy = 0) But from
part ¢) P(Ty < ool Xy = —1) = p/q so (Tp < oo|X; = —1)P(X; = —1|X, =
0) = (p/@)q = p.
Write X,, = > Z; where Z; = 1 if the ith step is up and X; = —1 if the ith
step is down and Z3,Zs, ... are independent. E[Z;] = p—q =2p—1 < 0.
By the strong law of large numbers %Z?:l Z; — 2p — 1 < 0 with probability
1. Hence X,, - —oo with probability 1 so P(Ty < oo|X; = 1) = 1 and
P(Ty < o0|X; =1)P(X; =1|Xo =0) =p.

Therefore P(Ty < 00| Xy = 0) = 2p.

Using the results from part d) the heuristic argument for choosing the solution
p/q in part c¢) can be made rigorous. If the solution had been 1, the probability
P(Ty < oo|Xy = 0) would have been 1 x p+ 1 x ¢ = 1. Thus there would have
been an infinite number of returns to 0, which contradicts that the chain is transient
when p < 1/2.



