Solution proposal STK2130-sp19

Problem 1

a) A class is defined as a set of states which communicate.

One class is $\{2,4\}$ since the paths $2,4,2$, and $4,2,4$ are possible so 2 and 4 communicate

The second class is $\{1,5\}$ since the paths $1,5,1$, and $5,1,5$ are possible so 1 and 5 communicate. The state $\{3\}$ is absorbing and therefore is a class of its own.
If the chain enters $\{1,5\}$, it stays there so there is an infinite number of visits to this class and the class is recurrent. If the initial state is 2 the path $2,4,5$ is possible and the chain does not return to 2 . Hence the class $\{2,4\}$ is transient. The state $\{3\}$ is absorbing, and hence is recurrent since the chain stays in 1 always, i.e. an infinite number of times.
b) From the Chapman-Kolmogorov equations

$$
P_{45}^{2}=\sum_{k=1}^{5} P_{4 k} P_{k 5}=(0,1 / 4,1 / 4,1 / 4,1 / 4)\left(\begin{array}{c}
1 / 2 \\
0 \\
0 \\
1 / 4 \\
1 / 2
\end{array}\right)=1 / 16+2 / 16=3 / 16
$$

c) The transition matrix for the chain moving outside $\{1,3,5\}$ and being absorbed in $\{1,3,5\}$ is when the states are $\{2,4, A\}$

$$
Q=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
0 & 0 & 1
\end{array}\right)
$$

Then $P\left(X_{3}=2, X_{k} \notin\{1,3,5\}, k=1,2 \mid X_{0}=4\right)=Q_{42}^{3}$ But

$$
\begin{aligned}
Q^{3} & =\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 / 8 & 1 / 8 & 3 / 4 \\
1 / 16 & 3 / 16 & 6 / 8 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

so

$$
Q_{42}^{3}=\sum_{k=1}^{5} Q_{4 k} Q_{k 2}^{2}=(1 / 4,1 / 4,1 / 2)\left(\begin{array}{c}
1 / 8 \\
1 / 16 \\
0
\end{array}\right)=(1 / 4)(1 / 8)+(1 / 4)(1 / 16)=3 / 64 .
$$

Remark that there are only two possible paths: $4,4,4,2$ and $4,2,4,2$ with probabilities $(1 / 4)(1 / 4)(1 / 4)=1 / 64$ and $(1 / 4)(1 / 2)(1 / 4)=1 / 32$.
d)

$$
\begin{array}{cc}
& P\left(X_{3}=1, X_{k} \notin\{1,3,5\}, k=1,2 \mid X_{0}=4\right) \\
= & P\left(X_{3}=1, X_{2}=2, X_{1} \notin\{1,3,5\} \mid X_{0}=4\right) \\
+ & P\left(X_{3}=1, X_{2}=4, X_{1} \notin\{1,3,5\} \mid X_{0}=4\right) \\
= & P\left(X_{3}=1 \mid X_{2}=2, X_{1} \notin\{1,3,5\}, X_{0}=4\right) P\left(X_{2}=2, X_{1} \notin\{1,3,5\}, \mid X_{0}=4\right) \\
+ & P\left(X_{3}=1 \mid X_{2}=4, X_{1} \notin\{1,3,5\}, X_{0}=4\right) P\left(X_{2}=4, X_{1} \notin\{1,3,5\} \mid X_{0}=4\right) \\
= & =Q_{42}^{2} P_{21}+Q_{44}^{2} P_{41}
\end{array}
$$

where $P\left(X_{3}=1 \mid X_{2}=2, X_{1} \notin\{1,3,5\}, X_{0}=4\right)=P_{21}=1 / 2$ and $P\left(X_{3}=\right.$ $\left.1 \mid X_{4}=2, X_{1} \notin\{1,3,5\}, X_{0}=4\right)=P_{41}=0$ follow by the Markov property. Thus $Q_{42}^{2} P_{21}+Q_{44}^{2} P_{41}=(1 / 16)(1 / 2)=1 / 32$ since $Q_{42}^{2}=1 / 16$
Here there is only one possible path: $4,4,2,1$ with probability $(1 / 4)(1 / 4)(1 / 2)=1 / 32$.
e) If $X_{0} \in\{1,3,5\}, T=0$ so $\mu_{i}=E\left[T \mid X_{0}=i\right]=0, k \in\{1,3,5\}$. Also

$$
\begin{aligned}
\mu_{2} & =\sum_{i=1}^{5} E\left[T, X_{1}=i \mid X_{0}=2\right] \\
& =\sum_{i=1}^{5} E\left[T \mid X_{1}=i, X_{0}=2\right] P\left(X_{1}=i \mid X_{0}=2\right) \\
& =\sum_{i=1}^{5} 1+E\left[T \mid X_{0}=i\right] P\left(X_{1}=i \mid X_{0}=2\right)
\end{aligned}
$$

since by the Markov property $E\left[T \mid X_{k}=i, X_{k-1}=j\right]=1+E\left[T \mid X_{k-1}=\right.$ $\left.i, X_{k-2}=j\right]=1+E\left[T \mid X_{k-1}=i\right]$. Thus $\mu_{2}=1+\mu_{1} P_{22}+\mu_{4} P_{24}=1+\mu_{4} / 2$. Similarly $\mu_{4}=1+\mu_{2} P_{42}+\mu_{4} P_{44}=1+\mu_{2} / 4+\mu_{4} / 4$. The equations

$$
\begin{aligned}
& \mu_{2}=1+\mu_{4} / 2 \\
& \mu_{4}=1+\mu_{2} / 4+\mu_{4} / 4
\end{aligned}
$$

have solutions $\mu_{2}=2$ and $\mu_{4}=2$.
5) The class $\{1,5\}$ is a closed class so once the chain enters the class it stays there. Hence π_{5} is the limit of the proportion of time the chain is in state 5 . Similarly $\pi_{1}=\lim _{n \rightarrow \infty} P\left(X_{n}=1 \mid X_{0}=1\right)$ is the limit of the proportion of time the chain is in state $1 .\left(\pi_{1}, \pi_{5}\right)$ is the solution of the equations

$$
\left(\pi_{1}, \pi_{5}\right)=\left(\pi_{1}, \pi_{5}\right)\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

and $\left.p i_{1}+\pi_{5}\right)=1$ so $\left(\pi_{1}, \pi_{5}\right)=(1 / 2,1 / 2)$.

Problem 2

a) A birth and death process is a continuous time Markov chain with state space $0,1,2, \ldots$. When the chain is in state i the times until the next change of state are independent exponentially distributed with mean $1 / v_{i}$ where $v_{0}=\lambda_{0}$ and $v_{i}=\lambda_{i}+\mu_{i}, i=1,2, \ldots$. The move to the next state is described by a binary random variable which is independent of how long the chain is in state i and has a distribution where the probability that the change is to $i+1$ is $\lambda_{i} /\left(\lambda_{i}+\mu_{i}\right)$ he probability that the change is to $i-1$ is $\mu_{i} /\left(\lambda_{i}+\mu_{i}\right) i=1,2, \ldots$ and the probability that the move is to 1 if $i=0$ is 1 .
b) The state is the number of customers so the state space is $0,1, \ldots, s$. The chain moves from i to $\mathrm{i}+1 i=0,1, \ldots, s-1$ when a new customer arrives so $\lambda_{i}=\lambda i=0, \ldots, s-1$. If no server is free so the state is $i=s$ the new customer leaves so $\lambda_{s}=0$. If i servers are busy the chain moves from i to $i-1, i=1, \ldots, s$ when the first server is free. This variable is the minimum of i independent exponentially distributed variable, which is an exponentially distributed variable with expectation $1 / i \mu$
Hence $v_{0}=\lambda, v_{i}=\lambda+i \mu, i=1, \ldots, s-1$ and $v_{s}=s \mu$. The transition matrix of the jumps has elements 0 except $P_{0,1}$ and $P_{i, i+1}=\lambda /(\lambda+i \mu)$, $P_{i, i-1}=\mu /(\lambda+i \mu), i=1, \ldots, s-1$ and $P_{s, s-1}=1$.

The instantaneous transition rates are therefore $q_{01}=\lambda, q_{i, i+1}=\lambda, i=$ $1, \ldots, s-1 q_{i, i-1}=i \mu, i=1, \ldots, s-1$ and $q_{s, s-1}=s \mu$.
c) The Kolmogorov backward equations have the form

$$
P_{i j}^{\prime}(t)=\sum_{k \neq i} q_{i k} P_{k j}(t)-v_{i} P_{i j}(t) .
$$

With the results from part b)

$$
\begin{aligned}
P_{0 j}^{\prime}(t) & =\lambda P_{1 j}(t)-\lambda P_{0 j}(t) \\
P_{i, j}^{\prime}(t) & =\lambda P_{i, i+1}(t)+i \mu P_{i-1, j}(t)-(\lambda+i \mu) P_{i, j}(t), i=1, \ldots, s-1 \\
P_{s, j}^{\prime}(t) & =s \mu P_{s-1, j}(t)-s \mu P_{s j}(t)
\end{aligned}
$$

d) The balance equations are

$$
v_{j} P_{j}=\sum_{k \neq j} q_{k j} P_{k}
$$

where P_{j} are the limiting probabilities. In this case

$$
\begin{array}{rcl}
v_{0} P_{0}= & q_{10} P_{1} & \text { i.e. } \lambda P_{0}=\mu P_{1} \\
v_{i} P_{i}= & q_{i-1, i} P_{i-1}+q_{i+1, i} P_{i+1} & \text { i.e. }(\lambda+i \mu) P_{i}=\lambda P_{i-1}+(i+1) \mu P_{i+1}, i=1, \ldots, s-1 \\
v_{s} P_{s}= & q_{s-1, s} P_{s-1} & \text { i.e. } s \mu P_{s}=\lambda P_{s-1} .
\end{array}
$$

e) First $P_{1}=\frac{\lambda}{\mu} P_{0}$. Inserting in the next equation $(\lambda+\mu) P_{1}=\lambda P_{0}+2 \mu P_{2}$, i.e. $(\lambda+\mu) P_{1}=\mu P_{1}+2 \mu P_{2}$ or $P_{2}=\frac{\lambda}{2 \mu} P_{1}$. If $P_{i}=\frac{\lambda}{i \mu} P_{i-1},(\lambda+i \mu) P_{i}=$ $(i+1) \mu P_{i+1}+\lambda P_{i-1}=(i+1) \mu P_{i+1}+i \mu P_{i}$, so $P_{i+1}=\frac{\lambda}{(i+1) \mu} P_{i}$ for $i=1, \ldots, s-1$. Also $P_{s}=\frac{\lambda}{s \mu} P_{s-1}$.
Hence, $P_{i}=\prod_{j=0}^{i} \frac{\lambda}{\mu} \cdots \frac{\lambda}{i \mu}=\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} P_{0}$ and $P_{i}=\frac{\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!}}{\sum_{j=0}^{s}\left(\frac{\lambda}{\mu}\right)^{\frac{1}{j!}}{ }^{\frac{1}{2}}}$.

Problem 3

a) It is impossible for the chain to return to 0 after an odd nunber of steps since it moves one step up with probability p or one step down with probability 1-p.
If the chain returns to 0 after 2 n steps, there must have been n steps up and n steps down. There are $\binom{2 n}{n}$ possible locations of the n steps upward and each of them occur with probability p. Hence $P_{00}^{2 n}=\binom{2 n}{n} p^{n}(1-p)^{n}$
b) From Stirling's approximation

$$
\begin{aligned}
& (2 n)!=\frac{(2 n)^{2 n} \sqrt{(2 \pi 2 n)}}{e^{2 n}}=\frac{2^{2 n+1} \sqrt{\pi} n^{2 n+1 / 2}}{e^{2 n}} \\
& (n!)^{2}=\frac{n^{2 n} 2 \pi n}{e^{2 n}}=\frac{2 \pi n^{2 n+1}}{e^{2 n}} .
\end{aligned}
$$

Hence $\frac{(2 n)!}{(n!)^{2}}=\frac{2^{2 n} \sqrt{\pi}}{\pi \sqrt{n}}=\frac{4^{n}}{\sqrt{\pi n}}$ and $P_{00}^{n}=\binom{2 n}{n} p^{n}(1-p)^{n}$ is approximately $\frac{[4 p(1-p)]^{n}}{\sqrt{\pi n}}$. Therefore $\sum_{n=1}^{\infty} P_{00}^{n}=\infty$ if and only if $p=1 / 2$ and the chain is recurrent if $p=1 / 2$ and transient if $p \neq 1 / 2$.
c) By decomposing the event $T_{1}<\infty$ according to whether $X_{1}=1$ or $X_{1}=-1$ $f=P\left(T_{1}<\infty \mid X_{0}=0\right)=P\left(T_{1}<\infty, X_{1}=1 \mid X_{0}=0\right)+P\left(T_{1}<\infty, X_{1}=\right.$ $\left.-1 \mid X_{0}=0\right)$. But

$$
\begin{array}{cc}
& P\left(T_{1}<\infty, X_{1}=1 \mid X_{0}=0\right) \\
= & P\left(T_{1}<\infty, X_{1}=1, X_{0}=0\right) / P\left(X_{0}=0\right) \\
= & P\left(T_{1}<\infty \mid X_{1}=1 X_{0}=0\right) P\left(X_{1}=1, X_{0}=0\right) / P\left(X_{0}=0\right) \\
= & P\left(T_{1}<\infty \mid X_{1}=1\right) P\left(X_{1}=1 \mid X_{0}=0\right)
\end{array}
$$

where we have used the Markov property. But $P\left(T_{1}<\infty \mid X_{1}=1\right)=1$ and $P\left(X_{1}=1 \mid X_{0}=0\right)=p$, so $P\left(T_{1}<\infty, X_{1}=1 \mid X_{0}=0\right)=p$.
Next consider $P\left(T_{1}<\infty, X_{1}=-1 \mid X_{0}=0\right)$ which by the same calculations equals $P\left(T_{1}<\infty \mid X_{1}=-1\right) P\left(X_{1}=-1 \mid X_{0}=0\right)$. But to reach 1 starting in -1 the chain must first reach 0 , i.e one unit about the starting value which has probability $P\left(T_{0}<\infty, \mid X_{0}=-1\right)$ and is equal to $P\left(T_{1}<\infty \mid X_{0}=\right.$ $0)$. Then having reach 0 the chain must reach 1 , which also has probability $f=P\left(T_{1}<\infty \mid X_{0}=0\right)$. Thus $P\left(T_{1}<\infty \mid X_{1}=-1\right)=f^{2}$ since by the Markov property the two events must be independent. Knowing that $X_{n}=0$
how the chain has reach this state is independent of the future behavior, so $P\left(T_{1}<\infty \mid X_{1}=-1\right) P\left(X_{1}=-1 \mid X_{0}=0\right)=f^{2} q$ and

$$
f=p+q f^{2} .
$$

The fact that $p<q$ means that the chain has a drift downward. The probability $P\left(T_{1}<\infty \mid X_{0}=0\right)$ is the same as the probability for absorption if the state 1 has been defined as an absorbing state. That this event should have probability 1 when there is a downward drift is not reasonable. Hence $f=p / q$ is the natural choice.
d) Decomposing By decomposing the event $T_{0}<\infty$ according to whether $X_{1}=1$ or $X_{1}=-1$ and arguing as in part c) $P\left(T_{0}<\infty \mid X_{0}=0\right)=P\left(T_{0}<\infty \mid X_{1}=\right.$ 1) $P\left(X_{1}=1 \mid X_{0}=0\right)+P\left(T_{0}<\infty \mid X_{1}=-1\right) P\left(X_{1}=-1 \mid X_{0}=0\right)$ But from part c) $P\left(T_{0}<\infty \mid X_{1}=-1\right)=p / q$ so $\left(T_{0}<\infty \mid X_{1}=-1\right) P\left(X_{1}=-1 \mid X_{0}=\right.$ $0)=(p / q) q=p$.

Write $X_{n}=\sum Z_{i}$ where $Z_{i}=1$ if the ith step is up and $X_{i}=-1$ if the ith step is down and Z_{1}, Z_{2}, \ldots are independent. $E\left[Z_{i}\right]=p-q=2 p-1<0$. By the strong law of large numbers $\frac{1}{n} \sum_{i=1}^{n} Z_{i} \rightarrow 2 p-1<0$ with probability 1. Hence $X_{n} \rightarrow-\infty$ with probability 1 so $P\left(T_{0}<\infty \mid X_{1}=1\right)=1$ and $P\left(T_{0}<\infty \mid X_{1}=1\right) P\left(X_{1}=1 \mid X_{0}=0\right)=p$.
Therefore $P\left(T_{0}<\infty \mid X_{0}=0\right)=2 p$.
Using the results from part d) the heuristic argument for choosing the solution p / q in part c) can be made rigorous. If the solution had been 1 , the probability $P\left(T_{0}<\infty \mid X_{0}=0\right)$ would have been $1 \times p+1 \times q=1$. Thus there would have been an infinite number of returns to 0 , which contradicts that the chain is transient when $p<1 / 2$.

