UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad STK2130 - Modelling by stochastic processes
Day of examination: Wednesday May 27th 2020.
Examination hours: May 27th, 14.30-June 4th, 14.30
This problem set consists of 5 pages.
Appendices: None.
Permitted aids: All available notes and books.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider a discrete-time Markov chain $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=\{1,2,3,4\}$, and transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{llll}
p & 0 & 0 & q \\
q & p & 0 & 0 \\
0 & 0 & p & q \\
0 & 0 & q & p
\end{array}\right]
$$

where $0<p<1,0<q<1$ and $p+q=1$.
a) Describe the Markov chain by a diagram.
b) The chain has three classes, $\mathcal{C}_{1}=\{1\}, \mathcal{C}_{2}=\{2\}$ and $\mathcal{C}_{3}=\{3,4\}$. For each of these classes discuss whether the class is transient or recurrent.
c) Show that the two-step transition probability matrix is given by:

$$
\boldsymbol{P}^{(2)}=\left[\begin{array}{cccc}
p^{2} & 0 & q^{2} & 2 p q \\
2 p q & p^{2} & 0 & q^{2} \\
0 & 0 & p^{2}+q^{2} & 2 p q \\
0 & 0 & 2 p q & p^{2}+q^{2}
\end{array}\right]
$$

d) Conditioned upon the chain has entered one of the states 3 or 4 find the stationary distribution over these two states.
e) We assume that $X_{0}=1$, and let M be given by:

$$
M=\min \left\{m>0: X_{m}=4\right\}
$$

Thus, M is the number of steps until the Markov chain enters state 4 for the first time given that the chain starts out in state 1 . Show that the probability distribution of M is given by:

$$
P(M=m)=p^{m-1} q, \quad m=1,2, \ldots
$$

f) Find $E[M]$.
g) In the remaining part of this problem we assume that $X_{0}=2$, and let N be given by:

$$
N=\min \left\{n>0: X_{n}=3\right\}
$$

Thus, N is the number of steps until the Markov chain enters state 3 for the first time given that the chain starts out in state 2 . Find $E[N]$.
h) Find the probability distribution of N.

Problem 2

An urn always contains 2 balls. The balls are colored either red or blue. At each stage a ball is randomly chosen and then replaced by a new ball, which with probability 0.75 is the same color, and with probability 0.25 is the opposite color, as the ball it replaces. This is modelled by a Markov chain $\left\{X_{n}: n \geq 0\right\}$ where:
$X_{n}=$ The number of red balls after the nth selection. $n=0,1,2, \ldots$
Thus, the state space of the Markov chain is $\mathcal{X}=\{0,1,2\}$.
a) Explain why the transition probability matrix of this Markov chain is:

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.75 & 0.25 & 0 \\
0.125 & 0.75 & 0.125 \\
0 & 0.25 & 0.75
\end{array}\right]
$$

b) It can be calculated that:

$$
\boldsymbol{P}^{(4)} \approx\left[\begin{array}{lll}
0.4238 & 0.4688 & 0.1074 \\
0.2344 & 0.5313 & 0.2344 \\
0.1074 & 0.4688 & 0.4238
\end{array}\right]
$$

You do not need to calculate this.
Find the probability that the fifth ball selected is red given that $X_{0}=2$ 。
c) Find the stationary distribution for the Markov chain $\left\{X_{n}: n \geq 0\right\}$.
d) Let ρ_{n} denote the probability that the nth ball selected is red given that $X_{0}=2$. Find:

$$
\lim _{n \rightarrow \infty} \rho_{n}
$$

e) We now introduce:

$$
N_{j}=\min \left\{n>0: X_{n}=j\right\}, \quad j \in \mathcal{X}
$$

Thus, N_{j} is the number of steps until the Markov chain makes a transition into state j. We then let:

$$
m_{j}=E\left[N_{j} \mid X_{0}=j\right], \quad j \in \mathcal{X}
$$

That is, m_{j} is the expected number of steps until the Markov chain returns to state j given that it starts out in state j.

Find m_{j} for all $j \in \mathcal{X}$.

Problem 3

In this problem we consider a population consisting of individuals able to produce offspring of the same kind. We assume that each individual will, by the end of its lifetime, have produced r new offspring with probability p_{r}, $r=0,1,2, \ldots$, independently of the numbers produced by other individuals. We assume that $p_{0}>0$, and that $p_{r}<1$ for $r=0,1,2, \ldots$

The number of individuals initially present, denoted by X_{0}, is called the size of the 0 -th generation. Moreover, we let:
$X_{n}=$ The population size in the nth generation, $\quad n=0,1,2, \ldots$
a) Explain why $\left\{X_{n}: n \geq 0\right\}$ is a Markov chain.
b) Explain why state 0 is a recurrent state, and why any state $j>0$ is transient.
c) In the rest of this problem we assume that $X_{0}=1$, and $E\left[X_{1}\right]=\mu$. Show that $E\left[X_{n}\right]=\mu^{n}$.
d) We then consider the probability that the population eventually dies out:

$$
\pi_{0}=\lim _{n \rightarrow \infty} P\left(X_{n}=0 \mid X_{0}=1\right)
$$

Show that π_{0} satisfies the following equation:

$$
\begin{equation*}
\pi_{0}=\sum_{r=0}^{\infty} \pi_{0}^{r} p_{r} \tag{1}
\end{equation*}
$$

e) In the following you may use without proof that π_{0} is the smallest positive number that satisfies (1).
Assume that $p_{0}=\frac{1}{5}, p_{1}=\frac{1}{5}, p_{2}=\frac{3}{5}$, and that $p_{r}=0$, for $r>2$.
Calculate μ and π_{0} in this case.

Problem 4

A system can be in three possible states denoted respectively 0,1 and 2. If the system is in state 0 , it is considered to be failed, while if the system is in state 2 , it is considered to be functioning perfectly. The state 1 represents an intermediate case where the system is functioning, but at a lower performance level than when it is in state 2.

We model this as a continuous-time Markov chain $\{X(t): t \geq 0\}$ with state space $\mathcal{X}=\{0,1,2\}$. The system can transit from state i to state $i+1$ with rate $\mu, i=0,1$. Such a transition is called a repair. Moreover, the system can transit from state i to state $i-1$ with rate $\lambda, i=1,2$. Such a transition is called a failure. Thus, a single repair can only increase the state by 1. Similarly, a single failure can only reduce the state by 1. It is not possible to transit directly from state 0 to state 2 or directly from state 2 to state 0 . Finally, we assume that $\mu>0$ and $\lambda>0$.

We also introduce:

$$
P_{i j}(t)=P(X(t)=j \mid X(0)=i), \quad \text { for all } i, j \in \mathcal{X}
$$

Moreover, for all $i, j \in \mathcal{X}$ we let:

$$
\begin{aligned}
q_{i j} & =\text { The transition rate from state } i \text { to state } j \text { if } i \neq j \\
v_{i} & =\sum_{j \in \mathcal{X} \backslash i} q_{i j}
\end{aligned}
$$

Finally, we let the matrix \boldsymbol{R} be given by:

$$
\boldsymbol{R}=\left[\begin{array}{ccc}
-v_{0} & q_{0,1} & q_{0,2} \\
q_{1,0} & -v_{1} & q_{1,2} \\
q_{2,0} & q_{2,1} & -v_{2}
\end{array}\right]
$$

a) Determine the matrix \boldsymbol{R} expressed in terms of μ and λ.
b) Let $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$, where:

$$
\pi_{j}=\lim _{t \rightarrow \infty} P_{i j}(t), \quad \text { for all } j \in \mathcal{X}
$$

Formulate a set of equations which can be used to determine $\boldsymbol{\pi}$, and solve these equations.
c) Assume that $X(0)=2$, and let:

$$
T=\min \{t>0: X(t) \neq 2\}
$$

Explain briefly why we have:

$$
P(T>t)=e^{-\lambda t}, \quad \text { for all } t>0
$$

d) We still assume that $X(0)=2$. However, we now consider the case where $\mu=0$, and let:

$$
S=\min \{t>0: X(t)=0\}
$$

What is the probability distribution of S ? Explain your answer.
(Continued on page 5.)

Problem 5

Let $\{X(t): t \geq 0\}$ be a standard Brownian motion process, and let $0<t_{1}<t_{2}$.
a) Find the joint density of $X_{1}=X\left(t_{1}\right)$ and $X_{2}=X\left(t_{2}\right)$.
b) Show that $\left(X_{2} \mid X_{1}=x_{1}\right) \sim N\left(x_{1}, t_{2}-t_{1}\right)$.
c) Show that $\left(X_{1} \mid X_{2}=x_{2}\right) \sim N\left(\frac{t_{1}}{t_{2}} x_{2}, \frac{t_{1}}{t_{2}}\left(t_{2}-t_{1}\right)\right)$.
d) Find $P\left(\max _{0 \leq s \leq 4} X(s) \geq 2\right)$.

END

