
STK2130: Solution to the exam spring 2023

Problem 1 a) The state diagram:
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23

b) From the diagram we see that it is possible to get from any state to any
other state by following the arrows, so the Markov chain is irreducible. It is also
recurrent as any irreducible Markov chain with a finite state space is recurrent.
To see that it is aperiodic, note that it is possible to start in state 2 and be
back in state 2 after 2 as well as after 3 steps. This means that a period would
have to divide both 2 and 3, which is impossible. Hence state 2 is aperiodic,
and since being aperiodic is a class property, all states are aperiodic, and hence
X is aperiodic.

c) The limit probabilities ~π = (π0, π1, π2, π3) have to satisfy the equation
~πP = ~π. We check with ~π = ( 3

13 ,
3
13 ,

4
13 ,

3
13 ) and see that:
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As the Markov chain is ergodic, and the πi’s are positive and satisfy π0 + π1 +
π2 + π3 = 1, we know from the theory that they are the limit probabilities.

d) If the Markov chain is reversible, it satisfies the detailed balance equation
πiPij = πjPji for all states i and j. As we have π1P12 = 3

13 ·
1
2 = 3

26 and
π2P21 = 4

13 ·
1
2 = 4

26 , we se that π1P12 6= π2P21, and hence the Markov chain is
not reversible.

e) We give two solutions of this problem:

Solution 1: Let us modify the Markov chain such that state 3 becomes ab-
sorbing. The new transition matrix is

P ′ =


0 1

3
1
3

1
3

1
2 0 1

2 0
0 1

2 0 1
2

0 0 0 1


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Note that the number of times the original process hits 2 before it hits 3, is the
same as the number of times the modified process X ′ hits 2.

If we only consider transitions between the (now) transient states 0, 1, and
2, we get the reduced matrix

P ′T =

 0 1
3

1
3

1
2 0 1

2
0 1

2 0


Hence

I − P ′T =

 1 − 1
3 − 1

3
− 1

2 1 − 1
2

0 − 1
2 1


and (using the formula in the problem)

S = (I − PT )−1 =

 3
2 1 1
1 2 4

3
1
2 1 5

3


According to the theory, sij is the average number of times X ′ started in i hits
j. As s02 = 1, X started at 0 will in average hit 2 once before it hits 3.

Solution 2: Let ti, i = 0, 1, 2, be the number of times the process started in
state i hits 2 before it hits 3. By looking at the transitions, we see that

t0 =
1

3
t1 +

1

3
t2

t1 =
1

2
t0 +

1

2
t2

t2 = 1 +
1

2
t1

(the 1 in the last equation is due to the fact that we are now considering what
is happening when we start in state 2, and hence have to count the starting
position as a visit). Rearranging these equations, we get

t0 −
1

3
t1 −

1

3
t2 = 0

−1

2
t0 + t1 −

1

2
t2 = 0

−1

2
t1 + t2 = 1,

which on matrix form becomes 1 − 1
3 − 1

3
− 1

2 1 − 1
2

0 − 1
2 1

 t0
t1
t2

 =

 0
0
1

 .

Using that  1 − 1
3 − 1

3
− 1

2 1 − 1
2

0 − 1
2 1

−1 =

 3
2 1 1
1 2 4

3
1
2 1 5

3

 ,
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we get  t0
t1
t2

 =

 3
2 1 1
1 2 4

3
1
2 1 5

3

 0
0
1

 =

 1
4
3
5
3


and hence t0 = 1 (there are, of course, many other ways to solve the system of
equations).

Problem 2 a) The waiting time T t1 for taxis is an exponentially distributed
random variable with rate 0.2. The expectation is E[T t1 ] = 1

λ = 1
0.2 = 5, which

means that the expected waiting time is 5 minutes.
b) T t1 and T c1 are two independent exponential random variables with rates λ

and µ, respectively. The probability that T c1 is the smallest, is µ
λ+µ = 0.3

0.2+0.3 =
0.6. Hence the probability that a customer arrives first is 0.6. When the first
customer has arrived, the processes start over again as exponential distributions
are memoryless, and hence the probability that the next one to arrive is a
customer, is still 0.6. This means that the probability that the first two to
arrive are customers, is 0.6 · 0.6 = 0.36.

c) The minimum of two independent exponential random variables with rates
λ and µ is a new exponential random variable with rate λ+µ = 0.2 + 0.3 = 0.5.
Hence the waiting time is 1

0.5 = 2 minutes.
d) As the random waiting times for new events are exponentially distributed

with rate 0.5, N is a Poisson process with rate 0.5. This means that N(10) is
Poisson distributed with mean 0.5 · 10 = 5, and hence

P [N(10) = 5] =
55

5!
e−5 =

625

24
e−5 ≈ 0.175

(you don’t need the decimal number to get full score).
e) Let S be the (random) time of the (K − 1)-st event. As the exponential

distributions are memoryless, the waiting time for the first taxi at time S is
exponential with rate λ, and the waiting time for the first customer at time S
is exponential with rate µ, regardless of everything that has happened before.
Hence the probability that a taxi is the first to arrive, is λ

λ+µ = 0.2
0.2+0.3 = 0.4.

f) By e) the probability that the 32nd event is that a taxi arrives, is 0.4. If the
taxi leaves 2 passengers behind, there must have been three customers waiting
before it arrived. This means that there must have been 17 customer arrivals
and 14 taxi arrivals among the 31 first events. As we can choose 14 among 31
in
(
31
14

)
ways and each way has probability 0.4140.617, the total probability is

0.4 ·
(

31

14

)
0.4140.617 =

(
31

14

)
0.4150.617

Problem 3 a) Note that B(u) = (B(u)−B(v)) +B(v) and that B(u)−B(v)
and B(v) are independent with mean 0. Hence

E[B(u)B(v)] = E
[(

(B(u)−B(v)) +B(v)
)
B(v)

]
= E [(B(u)−B(v))B(v)] + E[B(v)2] = E [(B(u)−B(v))]E [B(v)] + E[B(v)2]

= 0 + v = v
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By the same trick

αB(u) + βB(v) = α(B(u)−B(v)) + (α+ β)B(v),

which is a linear combination of two independent, normally distributed random
variables, and hence normally distributed.

b) First note that if s = 0, we have E[X(t)X(s)] = s as both expressions
are zero. For s > 0, we have

E[X(t)X(s)] = E

[
tB

(
1

t

)
sB

(
1

s

)]
= stE

[
B

(
1

t

)
B

(
1

s

)]
= st

1

t
= s,

where we in the last step used a) (remember that if t ≥ s, then 1
t ≤

1
s ). Note

that if we put s = t in this expression, we get E[X(t)2] = t and E[X(s)2] = s.
Next we observe that X(t)−X(s) = tB( 1

t )− sB( 1
s ) is normally distributed

by the second half of a), and that the mean is zero as both B( 1
t ) and B( 1

s ) have
mean zero.

Finally, we have

Var(X(t)−X(s)) = E
[
(X(t)−X(s))

2
]

= E
[
X(t)2

]
− 2E [X(t)X(s)] + E

[
X(s)2

]
= t− 2s+ s = t− s

where we have used that E[X(t)X(s)] = s, E[X(t)2] = t and E[X(s)2] = s as
observed above.
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