Additional exercises for STK2130 Spring 2013.

Attention! For us and throughout the course, our transition probability matrices have been such that all rows sum up to 1 , and the instantaneous rate matrices Q such that all rows sum up to 0 , that is, we denote the matrices $P=\left(p_{i j}\right)_{i j \in S}$ and $Q=\left(q_{i j}\right)_{i j \in S}$. As you might have noticed, in exams 2004-07 the convention is the opposite, all matrices are transposed and they use the notation $p_{j i}$ instead of ours $p_{i j}$ (also matrix Q in exam 2004 corresponds to matrix R from Section 6.8 in the book).

Exercise 5

Here we will consider the special case of Problem 2 Exam 2004 or Example 6.13 from the book with " M " repair men but now $M=N=2$.

The (infinitesimal) generator matrix in this special case is

$$
R=\left(\begin{array}{ccc}
-2 \lambda & 2 \lambda & 0 \\
\mu & -(\lambda+\mu) & \lambda \\
0 & 2 \mu & -2 \mu
\end{array}\right)
$$

It can be shown that $R=H^{-1} \Lambda H$ where

$$
\begin{gathered}
\Lambda=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -(\lambda+\mu) & 0 \\
0 & 0 & -2(\lambda+\mu)
\end{array}\right), \quad H=\left(\begin{array}{ccc}
\mu^{2} & 2 \lambda \mu & \lambda^{2} \\
-\mu & \mu-\lambda & \lambda \\
1 & -2 & 1
\end{array}\right) \\
H^{-1}=\frac{1}{(\lambda+\mu)^{2}}\left(\begin{array}{ccc}
1 & -2 \lambda & \lambda^{2} \\
1 & \mu-\lambda & -\lambda \mu \\
1 & 2 \mu & \mu^{2}
\end{array}\right)
\end{gathered}
$$

Let $P(t)=\left(p_{i j}(t)\right)_{i, j \in\{0,1,2\}}$ be the matrix of transition probabilities. From the text book it is known that $P(t)$ can be expressed by R as

$$
P(t)=e^{R t}=I+\sum_{k=1}^{\infty} R^{k} \frac{t^{k}}{k!}
$$

a) Prove that

$$
e^{\Lambda t}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-(\lambda+\mu) t} & 0 \\
0 & 0 & e^{-2(\lambda+\mu) t}
\end{array}\right)
$$

Hint: Use Taylor's expansion for the exponential function: $e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$.
b) Express $P(t)$ as simple as possible by H and H^{-1}.
c) Find $\lim _{t \rightarrow \infty} P(t)$ expressed by λ and μ.
(d) Write down $p_{0 j}(t), j=0,1,2$ in terms of λ and μ. Do you recognize the probability distribution?

Exercise 6 In a Healthy-Illness-Death (without recovery) scheme individuals may move from state 0. "Healthy" to state 1. "Illness" with rate q_{01}, from "Healthy" to state 2. "Death" with rate q_{02} and from Illness to Death with a rate q_{12}. No other direct transitions are possible. Let $X(t)$ be the state of such a process. The flow of the process is described in the figure below.

a) Write down the Kolmogorov equations for the transition probabilities $P_{i j}(t)=P(X(t)=j \mid X(0)=i)$ for such a system.
b) Find explicit expression for the $P_{i j}(t)$.
c) Plot $P_{00}(t), P_{01}(t)$ and $P_{02}(t)$ for $q_{01}=1=q_{02}$ and $q_{12}=2$.
d) Set up the infinitesimal generator matrix $\mathbf{R}=\mathbf{P}^{\prime}(0)$ where $\mathbf{P}^{\prime}(t)$ is the matrix of the derivatives of the $P_{i j}(t)$.
e) Express the matrix $\mathbf{P}(\mathbf{t})$ consisting of the $P_{i j}(t)$ in terms of the eigenvalues $\boldsymbol{\Lambda}$ and matrix of eigen-vectors \mathbf{U} of \mathbf{R}. Make a plot of $P_{00}(t), P_{01}(t)$ and $P_{02}(t)$ for $q_{01}=1=q_{02}$ and $q_{12}=2$ using this representation.
f) We could extend the system by allowing for recovery by introducing a transition rate $q_{10}>0$. Write down the matrix $\mathbf{R}=\mathbf{P}^{\prime}(0)$ for this system and make a plot of $P_{00}(t), P_{01}(t)$ and $P_{02}(t)$ for $q_{01}=$ $1=q_{02}, q_{12}=2$ and $q_{10}=1$ for this system using the corresponding method as in question e).

